

electronic components

capacitors semiconductors

Contents	Pag e
NUMERICAL INDEX	9
CAPACITORS	11
ELECTROLYTIC CAPACITORS	
METALLIZED FILM CAPACITORS	
POLYSTYRENE CAPACITORS	93
METALLIZED PAPER CAPACITORS	109
INTERFERENCE SUPPRESSORS	155
RC NETWORKS	169
MICA CAPACITORS	183
SEMICONDUCTORS	
Timing circuits	
Interface circuits	206

This new edition of the Rifa product catalogue dated 1977 has been designed to incorporate all of Rifa's product program that is of major international interest. It comprises the capacitor program and the standard ranges of the semiconductor program with the exception of the TTL microcircuits. These are described in a separate data book.

The feedback from our customers, with respect to specific information needs, has assisted us in the improvements made, and this we consider to be of immense value. In this catalogue, we have endeavoured to compile a product information guide of practical dimensions, which naturally cannot contain all the available information on a specific product. We would therefore like to bring to your attention that you should contact our local representatives and distributors or alternatively contact Rifa direct if you require more in-depth information oriented to your specific problems.

The index on the following pages offers a simple numerical reference to each product family and specific type. In using the catalogue we recommend that you first familiarise yourself with the characteristics and advantages of each product family, followed by the detailed information on each specific product. The cobination of these should give you sufficient comprehensive information to enable you to apply the product under normal conditions. When ordering the product, it is recommended that both the full part number and the specific characteristics of the product be detailed to avoid any possibility of interpretation error.

We are sure this catalogue will service you well, but it should be appreciated that this is only one element of the Rifa service available to you. It is our objective to give you a service second to none, of which we trust you will be a long term beneficiary.

CAPACITORS SEMICONDUCTORS

Numerical index

Type numbers	Page	Type numbers	Page
CM 15	186	PEH 144	58
CM 20	186	PEH 146	60
CM 35	186	PEH 147	60
		PEH 148	60
DM 10	186	PEH 149	60
DM 15	186	DEE 010	98
DM 19	186	PFE 210 PFE 216	102
DM 30	186	PFE 216 PFE 225	102
		PFE 225	100
PAB 2192	198	PHE 243	70
PAB 2194	198	PHE 280	74
PAB 2196	198	PHE 307	78
PAB 2198	198	PHE 353	82
		PHE 425	86
PBA 3008	200	PHN 451	148
PBA 3009	200	PHZ 2039	90
		1112 2000	•
PBD 3510	206	PME 2602	118
PBD 3511	206	PME 2614	118
PBD 3513	210	PME 2616	118
PBD 3520	216	PME 2631	118
PBD 3523	220	PME 271	162
		PME 273	166
PEG 112	18		
PEG 118	26	PMH 5102	122
PEG 119	26	PMH 5103	122
PEG 121	30	PMH 5112	122
PEG 122	34	PMH 5113	122
PEG 123	38	PMH 5122	122
PEG 124	42	PMH 5123	122
DELL 405	40	PMH 5132	122
PEH 125	46 46	PMH 5133	122
PEH 126	46 48	PMH 5204	122
PEH 128	46 46	PMH 5206	122
PEH 129	46 50	PMH 5214	122
PEH 130	52 50	PMH 5216	122
PEH 131	52 50	PMH 5226	122
PEH 132	52 50	PMH 5236	122
PEH 133	52 50	PMH 525	126
PEH 140	58	DAAN 514	144
PEH 141	58	PMN 511	144
PEH 143	58	PMN 5111	144

CAPACITORS SEMICONDUCTORS

Numerical index

Type numbers	Page	Type numbers	Page
PMP 5006	138	PMP 518 T	152
PMP 5016	138	PMP 519 T	152
PMP 5026	138		
PMP 5036	138	PMR 2022	176
PMP 5046	138	PMR 2026	176
PMP 5056	138	PMR 2052	178
PMP 508 M	142	PMR 207	178
PMP 508 T	150	PMR 209	180
PMP 509 M	142		
PMP 509 T	150	RR 113	22

INTRODUCTION

In air, aluminium (AI) is covered by a very thin oxide. By electro-chemical processing a thicker oxide can be formed and the thickness is proportional to the forming voltage.

The oxide Al_2O_3 has rectifying properties and it has a high insulation resistance for voltages lower than the forming voltage but with the same polarity.

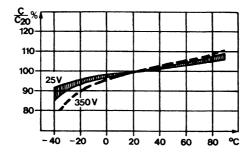
The oxide stands a high electric field strength and it has a high relative dielectric constant. It is therefore well suited as a capacitor dielectric in a **polar** capacitor.

The capacitance C of the electrolytic capacitor is dependent on oxide thickness d, the dielectric constant ε and surface A as given by the normal capacitance formula.

$$C = k \frac{\epsilon \times A}{d}$$

By etching, the effective surface of the Al-foil can be increased. Foils with 10 to 20 times capacitance increase compared with plain foil are used. General purpose capacitors normally utilize higher etching than long life types.

The negative "electrode" is a liquid electrolyte absorbed in a paper. The paper also acts as a spacer between the positive foil carrying the oxide and another Al-foil — the so called negative foil — acting as a contact medium to the electrolyte. The positive foil, the paper and the negative foil are rolled to a winding. This winding is impregnated with the electrolyte and then encapsulated in an Al-case sealed with an insulating disc or an Al-disc insulated from the case by a rubber insulator.


In axial lead capacitors the negative foil is connected to the Al-case and the positive foil is fed through the sealing disc. In can types usually both the positive and the negative connections are feed through the sealing disc. In this case, however, the negative terminal can internally still be connected to the case via axcess of electrolyte. Electrolytic capacitors must therefore be covered with an outer insulation when mounted on a chassis with another potential than the negative terminal of the capacitor.

SPECIFICATIONS

Aluminium electrolytic capacitors are covered in IEC publication 103. This specification divides the capacitors into two quality grades — Grade 1 which is a long life grade and Grade 2 which is a general purpose grade. In Rifa type specifications the IEC Grade and climatic category are stated. Test programmes and test requirements are then to be found in IEC 103 if nothing else is said in the type specifications. General technical data stated below conform in applicable parts with IEC 103.

CAPACITANCE

Capacitance is measured with \leq 0.5 V 100 Hz without DC polarisation if not otherwise is stated in the type specifications. Rated capacitance C_R is marked on the capacitors. The tolerance of the rated capacitance is valid at $+20^{\circ} \text{C}.$ When stated in the type specifications, capacitors with specified DC capacitance can be supplied to special order. The DC capacitance is defined by a time measuring method according to DIN 41 328 if nothing else is agreed.

Examples of dependence of capacitance at 100 Hz v temperature.

RATED VOLTAGE, REVERSE VOLTAGE, SURGE VOLTAGE

Rated voltage U_R is stated in the type specifications and marked on the capacitors. U_R is the highest DC voltage that continuously may be applied to the capacitors within the category temperature range.

When an AC voltage is superimposed on a DC voltage the sum of the DC voltage and the peak of the AC voltage must not exceed $U_{\rm R}$.

The maximum reverse voltage — DC or peak AC — is 2 V continuously.

The maximum surge voltage within the category temperature range is

1.15
$$\times$$
 U_R for U_R \leq 350 V
1.1 \times U_R for U_R $>$ 350 V

for max 1 minute per 6 minute periods but totally max 5 minutes per hour.

TEMPERATURE RANGE

The temperature range is stated in the type specifications.

The upper temperature limit is the highest ambient temperature to which the capacitors may be continuously exposed in order to operate with intended reliability when connected to rated voltage.

The lower temperature limit is dependent on the increase of 100 Hz impedance as defined in IEC 103.

DISSIPATION FACTOR, EQUIVALENT SERIES RESISTANCE

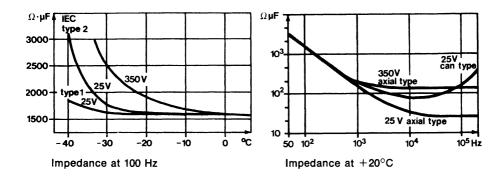
The dissipation factor $tan\delta$ is defined as $r_s \omega C$ at $+20^{\circ}C$ and 100 Hz

 $tan\delta$ is the tangent for the loss angle δ

 $r_s = \frac{\tan \delta}{\omega \, C} \qquad \text{is the equivalent series resistance formed} \\ \text{by the losses in the capacitor (diel. losses} \\ \text{in the oxide, resistance in electrolyte, foils} \\ \text{and terminations)}$

 $\omega = 2 \pi f$ where f is the measuring frequency 100 Hz

C is the actual capacitance


The max values of tan are stated in the type specifications. IEC publication 103 states the following max values:

UR	VDC	4	6.3	10	16	25	40	63	100	160	250	350	450
tanð	°/o	50	50	50	35	35	25	25	20	20	20	20	20

IMPEDANCE

The impedance of an electrolytic capacitor is composed of the capacitive and inductive reactances and the equivalent series resistance. The inductive reactance influences the impedance only at higher frequencies. Examples of impedance curves v frequency and temperature are given below:

RIPPLE CURRENT

An AC voltage superimposed on the DC voltage across a capacitor will cause a power loss and a self-heating of the capacitor.

For a sinusoidal RMS voltage U or current I of frequency f the power loss in Watts will be

$$P = \frac{U^2}{X} tan\delta = UI \quad tan\delta = I^2X \quad tan\delta$$

$$X = \frac{1}{2\pi fC} \quad tan\delta = dissipation factor at frequency f$$

$$C = capacitance in Farad$$

Recommended max RMS ripple currents at 100 Hz and specified ambient temperatures are stated in the type specifications. As $\frac{\tan \delta}{2 \pi \, \text{fC}}$ decreases somewhat at increasing frequencies up to approximately 1000 Hz a higher current can be allowed at higher frequencies than 100 Hz for the same self-heating. At lower frequencies lower currents must be applied. Information on this is given in the type specifications.

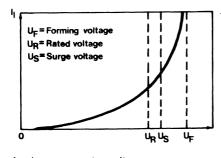
The peak value of the superimposed AC voltage must not cause a reverse voltage higher than 2 V.

LEAKAGE CURRENT

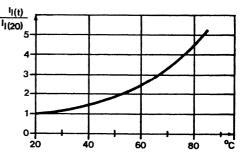
The leakage current I_1 shall be measured at $+20^{\circ}$ C after 5 minutes at rated voltage. The following max values are valid if nothing else is stated in the data specifications:

	Max. Ι _Ι μA for IEC grade		
	IEC Grade 1	IEC Grade 2	
$C_R \times U_R \le 1000 \ \mu F \ V$	0.01 C _R ×U _R	0.05 C _R ×U _R or 5*)	
$C_R \times U_R > 1000 \mu F V$	0.006 C _R ×U _R +4	$0.03C_R \times U_R + 20$	

C=rated capacitance in µF


U=rated voltage in V

*) whichever is the greatest


After long term storage the capacitors shall be connected to rated voltage in series with a resistance of 100 Ω for U $_{R} \leq$ 100 VDC and 1000 Ω for U $_{R} >$ 100 VDC for one hour and then disconnected for 12 to 48 hours before measurement.

In continuous operation I₁ will decrease to low values. For capacitors with rated voltage ≤ 70 V the leakage current is in the order 10^{-3} to 10^{-4} μ A/ μ F \times V at $+20^{\circ}$ C. Corresponding figures for capacitors with higher rated voltage are 10^{-2} to 10^{-3} μ A/ μ F \times V.

Typical curves for leakage current v voltage and temperature is given below.

Leakage current v temperature

DISCHARGE OPERATION

All Rifa electrolytic capacitors can be short-circuited when charged to rated voltage or charged from a source without internal resistance. Repeated charging-discharging is to be regarded as an AC voltage and the repetition rate must be limited due to the self-heating caused.

Max capacitance change after 10⁶ charges-discharges with a time constant of 0.1 s and a repetition rate of one cycle per second is stated in the type specifications.

OUTER INSULATION

Outer plastic insulation and insulated stud mounting versions will withstand a voltage test at $+20^{\circ}\text{C}$ with 1000 VDC for 1 minute between capacitor case and chassis or a metal foil wrapped around the insulation. The insulation resistance at $+20^{\circ}\text{C}$ exceeds 100 M Ω measured after 1 minute at 100 VDC. These results will also be met after a 56 days humidity test at $+40^{\circ}\text{C}$ and 90-95% R.H.

STORAGE

The change of capacitance, impedance and dissipation factor (see also under LEAK-AGE CURRENT) after long term storage at room temperature or below will be insignificant and, when put in service, the capacitors will still operate satisfactorily. The life of the capacitors can be regarded to be consumed to a lesser extent compared with service at the same temperature.

Long term storage at elevated temperatures should be avoided.

Rifa's electrolytic capacitors can be stored at temperatures down to --55°C.

LIFE EXPECTANCY

The life of electrolytic capacitors in normal electric or electronic equipment is mainly dependent upon ambient temperature and the self-heating caused by AC current, and to a smaller extent by the DC voltage as long as the voltage does not exceed the rated voltage.

The service life of a capacitor is estimated to double with each temperature decrease of $7-10^{\circ}$ C. A capacitor with a service life of 2000 h at $+85^{\circ}$ C can thus be expected to have a life of at least

4000 h at +75°C 8000 h at +65°C 16000 h at +55°C and so on.

ELECTROLYTIC CAPACITORS Selection guide

Grade and specification	Cap. range μF	Volt. range VDC	Temp. range °C	Туре	Dlam. range mm	Type No.	Type spec. page
GENERAL	PURPOSE	GRADE					
IEC 103 Grade 2	0.47—1000		55/+85 40/+85		6.5—10	PEG 112	18
IEC 103 Grade 2	2.2—470	16—63	40/+85		6.5—13.5	RR 113	22
IEC 103 Grade 2	1—10000		40/+85 25/+70		10—25	PEG 118—119	26
IEC 103 Grade 21	22—47000		40/+85 25/+85	##	25—40	PEH 130—133	52
IEC 103 Grade 2	22—10000	12—450	25/+70	Ţ	25—35	PEH 140—144	58
LONG LIFE	GRADE						
DIN 41 257	22—4700	10—70	40/+85		1020	PEG 121	30
BPO D2186	10—3300	10—100	40/+85	-	10—20	PEG 122	34
IEC 103 Grade 1	10—4700	10100	4 0/+85		1020	PEG 123	38
Telephone grade	10—2200	12—100	40/+85		1020	PEG 124	42
IEC 103 Grade 1	220— 100000	6.3—350	40/+70 ²	11	35—75	PEH 125—129	46
IEC 103 Grade 1	470— 47000	10—100	—40 /+85		35—50	PEH 146—149	60

 $^{^{1}}$) The capacitors meet the specification for grade 1 up to $\pm 70^{\circ}$ C max. temp.

²) Temperature range extended in the voltage range 6.3—70 V to +85°C for grade 2 version.

PEG 112 is a miniaturized electrolytic capacitor type encapsulated in an aluminium can sealed with a rubber disc. All-welded design. Tinned copper wire leads. Plastic insulation is standard.

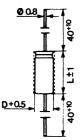
PEG 112 is mainly intended for filtering, coupling and decoupling in consumer equipment such as radio and TV-sets but is also well suited for industrial equipment if operated at moderate temperatures.

Basic specifications IEC publ. 103 Grade 2, category 55/085/56 (40/085/56 for U_R

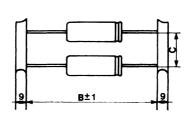
> 100 VDC)

DIN 41 332 and DIN 41 316 type IIA, class FPF (GPF)

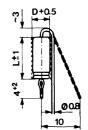
Temperature range -55° C to $+85^{\circ}$ C (-40° C to $+85^{\circ}$ C for rated voltage


> 100 VDC)

-10 to +50%Capacitance tolerance


General technical data

See "Introduction Electrolytic Capacitors"


PEG 112, standard version

PEG 112, suffix-T1*) (standard version on tape)

PEG 112, suffix V*)

Dimensions in mm

*) Suffix T1 and suffix V versions can normally be supplied only when ordered in production quantities.

Case o	ode	Α	D	Е	F	Н	К	L	М	N
D L B C Weight	mm mm mm mm	6.5 16 85 10	6.5 18 85 10	8.5 16 85 10	8.5 18 85 10	8.5 20 85 10	8.5 25 90 10	10 21 85 15	10 24 90 15	10 27 95 15
approx. Standar box content	d g	1.4 500	1.5 500	2.0 500	2.2 500	2.5 400	3.0 250	3.4 250	3.7 250	4.0 250

STANDARD UNITS

Cap. μF	Rated voltage VDC	Dimension D×L mm (code)	Ripple current ¹) +40°C 100 Hz I _O mA	Leakage²) current max μΑ	Order Blumber³)
100	6.3	6.5×16 (A)	175	32	PEG 112DA310
220		8.5×16 (E)	300	62	PEG 112DE322
470		8.5×20 (H)	490	109	PEG 112DH347
1000		10×24 (M)	890	209	PEG 112DM410
100	10	6.5×18 (D)	210	50	PEG 112ED310
220		8.5×18 (F)	360	86	PEG 112EF322
470		10×21 (L)	640	161	PEG 112EL347
47	16	6.5×16 (A)	150	38	PEG 112GA247
100		8.5×16 (E)	255	68	PEG 112GE310
220		8.5×20 (H)	420	126	PEG 112GH322
470		10×24 (M)	760	246	PEG 112GM347
100	25	8.5×18 (F)	240	95	PEG 112HF310
220		10×21 (L)	500	185	PEG 112HL322
22	40	6.5×16 (A)	120	44	PEG 112KA222
47		8.5×16 (E)	200	76	PEG 112KE247
100		8.5×20 (H)	325	140	PEG 112KH310
220		10×24 (M)	600	284	PEG 112KM322
47	50	8.5×18 (F)	235	91	PEG 112LF247
100		8.5×25 (K)	235	170	PEG 112LK310
10	63	6.5×16 (A)	100	32	PEG 112MA210
22		8.5×16 (E)	170	62	PEG 112ME222
47		8.5×20 (H)	275	109	PEG 112MH247
100		10×24 (M)	500	209	PEG 112MM310
2.2	100	6.5×16 (A)	50	11	PEG 112PA122
4.7		6.5×16 (A)	70	24	PEG 112PA147
10		8.5×16 (E)	120	50	PEG 112PE210
22		8.5×20 (H)	205	86	PEG 112PH222
47		10×27 (N)	365	161	PEG 112PN247
1.0	350	8.5×16 (E)	34	18	PEG 112UE110
2.2		8.5×18 (F)	53	39	PEG 112UF122
4.7		10×24 (M)	100	69	PEG 112UM147

[&]quot;) Ripple current at other temperatures and frequencies, see Special technical features.

²⁾ Leakage current after 5 minutes at rated voltage and +20°C.

³⁾ Add -T1 to the order No. for PEG 112 supplied on tape. Example: PEG 112DA310-T1. Add V to the order No. for the vertical mounting version. Example: PEG 112DA310V.

SPECIAL TECHNICAL FEATURES

Dissipation factor

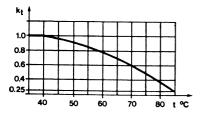
tan∂ 100 Hz Max. %			
20			
20 16			
14			
10 10			
8			
7			

Discharge operation

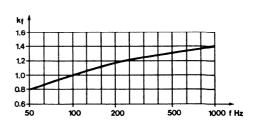
Capacitance change less than 10% after 106 charges and discharges.

Bump test

The capacitors will withstand a test according to IEC publ. 68-2-29, test Eb, 4000 bumps with 390 m/s2 when mounted by their leads only.


Endurance test

The endurance test may be carried out for 1000 h at +85°C and rated voltage.


After such a test the capacitance change is less than 25%. the dissipation factor max. 1.5 times the max. value stated above and the leakage current is still below specified limits.

Ripple current multipliers Tabulated ripple currents Io refer to 100 Hz and an ambient temperature of +40°C. Ripple currents at other frequencies and temperatures can be calculated from the curves below and the formula

$$I = k_f \times k_t \times l_o$$

Ripple current multiplier v ambient temperature

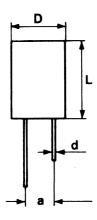
Ripple current multiplier v frequency

Notes
·

RR 113

RR 113 is a miniaturized single-ended electrolytic capacitor for upright mounting on printed circuit boards. It is mainly intedended for filtering, coupling and decoupling and timing application in consumer equipment, but is also well suited for industrial equipment if operated at moderate temperatures. Tinned copper terminations. Outer plastic insulation is standard.

Bastic specifications IEC 103 grade 2 40/085/56


DIN 41259 type II A, class GPF

DIN 41332

Temperature Range —40°C to +85°C

Capacitance Tolerance —10 to $+100^{\circ}/_{\circ}$ for C \leq 47 μ F

—10 to $+50^{\circ}/_{\circ}$ for C > 47 μF

Dimensions in mm

Case C	Code	A	В	С	D	E	F	G	Н
D	mm	6.5	8.75	10	12.5	12.5	12.5	13.5	13.5
L	mm	12	13	13	13	16.5	20	20	25
d	mm	0.6	0.8	0.8	0.8	0.8	0.8	0.8	0.8
a	mm	2.5	5	5	5	5	5	5	5
Weight approx.	g	0.7	1.1	1.7	2.4	3.0	3.5	3.9	4,5

STANDARD UNITS (16-63 V)

Cap μF	Rated Voltage VDC	Dimension DXL mm	Ripple current 100 Hz 85°C I _O mA	Order Number
100	16	10.0 ×13	200	RR 113GC310
220		12.5 ×16.5	320	RR 113GE322
470		13.5 ×20	480	RR 113GG347
22	25	6.5 × 12	60	RR 113HA222
47		8.75 × 13	120	RR 113HB247
100		12.5 × 13	200	RR 113HD310
220		12.5 × 20	330	RR 113HF322
470		13.5 × 25	550	RR 113HH347
10	40	6.5 ×12	35	RR 113KA210
22		8.75×13	70	RR 113KB222
47		10.0 ×13	130	RR 113KC247
100		12.5 ×16.5	215	RR 113KE310
2.2	63	6.5 ×12	20	RR 113MA122
4.7		6.5 ×12	35	RR 113MA147
10		8.75×13	45	RR 113MB210

SPECIAL TECHNICAL FEATURES

Dissipation factor

Rated voltage V	tand δ 100 Hz Max ⁰/₀
16	16
25	14
40	12
63	8

Leakage current

Leakage current in μA at 20°C after 10 minutes at rated voltage.

 $I\!=\!0.05~C\!\times\!U_R$ for $CU_R\leq 1~000~\mu\text{FV}$

 $I\!=\!0.03~C\!\times\!U_R~+20$ for $CU_R>1~000~\mu\text{FV}$

RR 113

Endurance test

The endurance test may be carried out for 1 000 h at $+85^{\circ}$ C and rated voltage.

After such a test the capacitance change is less than 30%, the dissipation factor max 2 times the max value stated above and the leakage current is still below specified limits.

RIPPLE CURRENT MULTIPLIERS

Tabulated ripple current I_o refer to 100 Hz and an ambient temperature of 85° C. Ripple currents at other temperatures can be estimated by applying ripple current multipliers given below.

Temperature °C	85	65	45	25	
Multiplier	1	2	2.5	3	

Notes

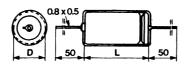
ELECTROLYTIC CAPACITORS

PEG 118-119

PEG 118—119 are electrolytic capacitors encapsulated in aluminium cans sealed with rubber-faced phenolic discs. Tinned brass wires of rectangular section. Plastic insulation is standard.

PEG 118—119 is suited for filtering, coupling, decoupling and timing in industrial equipment.

Basic specifications IEC 103 Grade 2, category 40/085/56


 $(25/070/56 \text{ for } U_{B} \ge 100 \text{ VDC}).$

Temperature range —40°C to +85°C (—25°C to +70°C for rated voltage

 \geq 100 VDC).

Capacitance tolerance —10 to $+50^{\circ}/_{\circ}$.

General technical data See "Introduction" Electrolytic Capacitors.

Dimensions in mm

Case c	ode	Α	В	С	D	Е	F	G	J	L	М
D*) L	mm mm	10 19	10 2 9	13 19	13 29	13 38	16 29	16 38	20 40	25 40	25 48
Weight approx.	g	3	4	4	6	8	9	12	18	26	32

^{*)} Add 0.4 mm for plastic insulation.

STANDARD UNITS

Cap. μF	Rated voltage VDC	Dimension D×L mm (code)	Ripple current') 100 Hz I _O mA (k _f)	Leakage²) current max μA	Impedance 100 kHz, +20°C max. Ω	Order Number
150	16	10×19 (A)	70 (a)	92	0.57	PEG 118GA315
680		13×29 (D)	190 (a)	346	0.13	PEG 118GD368
1000		16×29 (F)	230 (a)	500	0.09	PEG 118GF410
4700		25×48 (M)	650 (d)	2276	0.02³)	PEG 119GM447
100	25	10×19 (A)	60 (a)	95	0.60	PEG 118HA310
220		10×29 (B)	120 (a)	185	0.27	PEG 118HB322
220		13×19 (C)	100 (a)	185	0.27	PEG 118HC322
470		13×29 (D)	180 (a)	373	0.13	PEG 118HD347
1000		16×38 (G)	310 (a)	770	0.06	PEG 118HG410
2200		20×40 (J)	400 (b)	1670	0.04 ³)	PEG 119HJ422
3300		25×40 (L)	560 (b)	2495	0.03 ³)	PEG 119HL433
150	40	13×19 (C)	100 (a)	200	0.27	PEG 118KC315
330		13×29 (D)	170 (a)	416	0.12	PEG 118KD333
470		16×29 (F)	210 (a)	584	0.09	PEG 118KF347
1000		20×40 (J)	340 (b)	1220	0.06 ³)	PEG 119KJ410
2200		25×40 (L)	560 (b)	2660	0.03 ³)	PEG 119KL422
47	63	10×19 (A)	60 (a)	109	0.85	PEG 118MA247
100		10×29 (B)	100 (a)	209	0.40	PEG 118MB310
100		13×19 (C)	80 (a)	209	0.40	PEG 118MC310
220		13×29 (D)	150 (a)	436	0.18	PEG 118MD322
470		16×38 (G)	260 (a)	908	0.09	PEG 118MG347
1000		25×40 (L)	430 (b)	1910	0.05³)	PEG 119ML410
1500		25×48 (M)	560 (b)	2855	0.05³)	PEG 119MM415
22	100	10×19 (A)	30 (f)	86	11.0	PEG 118PA222
47		10×29 (B)	50 (f)	161	5.3	PEG 118PB247
47		13×19 (C)	40 (f)	161	5.3	PEG 118PC247
100		13×29 (D)	80 (f)	320	2.5	PEG 118PD310
220		16×38 (G)	130 (f)	680	1.1	PEG 118PG322
470		25×40 (L)	230 (f)	1430	0.53	PEG 119PL347
4.7	160	10×19 (A)	20 (c)	38	21.0	PEG 118QA147
10		13×19 (C)	30 (c)	68	10.0	PEG 118QC210
22		13×29 (D)	50 (c)	126	4.6	PEG 118QD222
47		16×29 (F)	70 (c)	246	2.1	PEG 118QF247
100		20×40 (J)	120 (d)	500	1.0	PEG 119QJ310
2.2	350	10×19 (A)	10 (c)	39	59.0	PEG 118UA122
4.7		13×19 (C)	20 (c)	69	28.0	PEG 118UC147
10		13×29 (D)	30 (c)	125	13.0	PEG 118UD210
22		16×38 (G)	60 (c)	251	5.9	PEG 118UG222
33		20×40 (J)	70 (d)	367	3.9	PEG 119UJ233
68		25×40 (L)	120 (d)	734	1.9	PEG 119UL268
4.7	450	13×29 (D)	20 (c)	83	28.0	PEG 118YD147
10		16×38 (G)	40 (c)	155	13.0	PEG 118YG210
15		20×40 (J)	50 (d)	223	8.7	PEG 119YJ215
33		25×40 (L)	90 (d)	466	3.9	PEG 119YL233

¹⁾ See Special technical features.

²⁾ Leakage currents after 5 minutes at rated voltage and +20°C.

³⁾ Impedance at 10 kHz.

RIFA

SPECIAL TECHNICAL FEATURES

Dissipation factor

Rated voltage VDC	16—25	40—63	≥ 100	
tan δ 100 Hz	0.25	0.20	0.20	

Discharge operation

Capacitance change less than $10^{9}/_{0}$ after 10^{6} charges and discharges.

Bump test

The capacitors will withstand a test according to IEC publ.

68-2-29 test Eb, 4000 bumps with 390 m/s². Diameter \geq 16 mm must be clamped.

Diameter \leq 13 mm mounted by their leads.

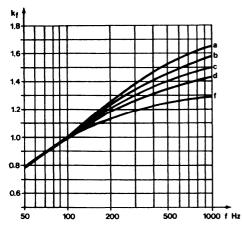
Solderability

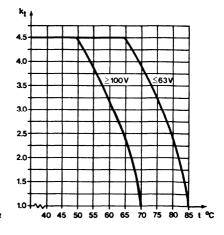
The solderability meets the requirements in IEC 68-2-20, test T,

solder bath method.

Mounting

The capacitors may be mounted in any position.


Endurance test


The endurance test may be carried out for 1000 h at the upper temperature (+85°C for $U_R \le 63$ VDC, +70°C for $U_R \ge 100$ VDC) and rated voltage.

After such a test the capacitance change is less than $25^{\circ}/_{\circ}$, the dissipation factor less than $1.5\times$ stated initial max. value and the leakage current is still below specified limits.

Ripple current

Tabulated ripple currents I_o refer to 100 Hz and an ambient temperature of $+70^{\circ}\text{C}$ for $U_R \geq 100$ VDC and $+85^{\circ}\text{C}$ for $U_R \leq 63$ VDC. Ripple currents at other frequencies and temperatures can be calculated from the curves below and the formula $I=k_f\times k_t\times I_o$. Applicable curve k_f is given for each article in the table.

Notes

PEG 121

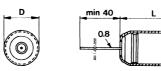
PEG 121 is a long life electrolytic capacitor encapsulated in an aluminium can sealed with a high purity aluminium disc and rubber gasket seal. Tinned copper wire leads. Plastic insulation is standard. The range is designed to meet the DIN specifications for tubular electrolytic capacitors for "erhöhte Anforderungen".

PEG 121 is supplied as 1A- or 1B-capacitors, 1B only for 40—70 VDC. Type 1A is mainly intended for filtering, coupling or decoupling. Type 1B is mainly intended for timing.

Basic specifications DIN 41 257

DIN 41 240, type 1A and 1B DIN 40 040, class GPF IEC 103 Grade 1 40/085/56

Temperature range —40°C to +85°C


Capacitance tolerance —10 to $+50^{\circ}/_{\circ}$ type 1A.

0 to +50% type IB. See also under

min 40 0.8

Special technical features.

General technical data See "Introduction" Electrolytic Capacitors.

Case code	;	Α	В	D	F	G	Н	J	L
D*)	mm'	10	10	13	16	16	20	20	20
Lmax	mm	20	30	30	30	40	30	40	47
Weight approx	g	3	4	6	9	11	13	20	24
Standard box content	pcs	200	200	200	100	100	100	100	100

^{*)} Add 0.2 mm to D for max. diameter of insulated case.

STANDARD UNITS

Cap. μF	Rated voltage VDC	Dimensions D×L mm (code)	tan∂ 100 Hz max.	Ripple current ²) at +40°C I mA		Impedance 10 kHz +20°C	Order Number') for type IA		
	100	(code)	⁰/₀		100 Hz	max. Ω			
220	6.3	10×20 (A)	25	200	310	1.8	PEG 121DA322		
470		10×30 ²) (B)	25	430	580	0.85	PEG 121DB347		
1000		16×30 (F)	25	900	1100	0.40	PEG 121DF410		
2200		16×40 ²) (G)	29	1600	1700	0.32 ⁴)	PEG 121DG422		
4700		20×40 ²) (J)	33	3000	3200	0.15 ⁴)	PEG 121DJ447		
220	10	10×20 ²) (A)	20	290	410	1.1	PEG 121EA322		
470		13×30 (D)	20	600	700	0.50	PEG 121ED347		
1000		16×30 ²) (F)	20	1200	1300	0.25	PEG 121EF410		
2200		20×30 ²) (H)	24	2000	2200	0.23 ⁴)	PEG 121EH422		
100	16	10×20 (A)	16	200	290	1.8	PEG 121GA310		
220		10×30²) (B)	16	440	490	0.82	PEG 121GB322		
470		16×30 (F)	16	850	950	0.38	PEG 121GF347		
1000		20×30 (H)	16	1400	1500	0.18	PEG 121GH410		
2200		20×40²) (J)	20	2500	2800	0.16 ⁴)	PEG 121GJ422		
47	25	10×20 (A)	14	140	190	2.8	PEG 121HA247		
100		10×20^2) (A)	14	300	330	1.3	PEG 121HA310		
220		16×30 (F)	14	550	600	0.59	PEG 121HF322		
470		16×30^2) (F)	14	1000	1100	0.27	PEG 121HF347		
1000		20×40^2) (J)	14	1700	1800	0.13	PEG 121HJ410		
47	40	10×20 (A)	12	200	220	1.9	PEG 121KA247		
100		13×30 (D)	12	380	420	0.90	PEG 121KD310		
220		16×30²) (F)	12	650	700	0.41	PEG 121KF322		
470		20×30 (H)	12	1100	1200	0.19	PEG 121KH347		
1000		20×47 (L)	12	2000	2200	0.09	PEG 121KL410		
22 47 100 220 470	70	10×20 (A) 10×30 ²) (B) 16×30 ²) (F) 20×30 (H) 20×47 ²) (L)	8 8 8 8	165 290 520 900 1600	185 320 580 1000 1800	2.7 1.3 0.6 0.27 0.13	PEG 121NA222 PEG 121NB247 PEG 121NF310 PEG 121NH322 PEG 121NL347		

¹⁾ Order No. for type IB for example: PEG 121NF310B.

²⁾ This dimension which is somewhat smaller than specified in DIN 41 257 will be delivered for some time. All other data are In accordance with DIN 41 240 and DIN 41 257.

³⁾ Ripple currents at other temperatures, see Special technical features.

⁴⁾ Max. impedance at 1 kHz.

SPECIAL TECHNICAL FEATURES

Capacitance 1A-capacitors are measured with $\leq 0.5 \text{ V}$ 50 Hz at $+20^{\circ}\text{C}$.

1B-capacitors are measured with a DC voltage according to

DIN 41 328 (time constant method).

Discharge operation Capacitance change less than 3% after 108 charges and dis-

charges.

Ripple current Tabulated values of ripple current refer to an ambient tem-

perature of $+40^{\circ}\text{C}$. At higher temperatures the following mul-

tipliers shall be applied:

Temp. °C	50	60	70	80	85
Multiplier	0.9	0.8	0.6	0.4	0.25

Vibration and bump test

10—500 Hz, 98 m/s 2 for 6 hours according to DIN 40 046, Blatt 8. 4000 bumps with 390 m/s 2 , test Eb according to IEC

68-2-29.

Diameter \geq 16 mm must be clamped. Diameter \leq 13 mounted by their leads.

Solderability

When tested to IEC 68-2-20, test T , solder globule method, the soldering time of the terminals in received condition is

less than 1 s.

Life expectancy

The life expectancy exceeds 10 000 h at $+85^{\circ}$ C and rated voltage.

Reliability

The reliability at $+40^{\circ}$ C stated below exceeds the requirements in DIN 41 240.

Diameter	Catastrophic failures	Total failures		
10 mm	1º/₀/100 000 h	5º/₀/100 000 h		
> 10 mm	1º/₀/100 000 h	3º/₀/100 000 h		

Catastrophic failures are short circuits or open circuits.

Total failures are the sum of catastrophic failures and degradation failures.

Notes
······
······

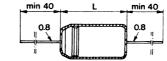
PEG 122 is a long life electrolytic capacitor encapsulated in an aluminium can with a high purity aluminium disc and rubber gasket seal. All-welded design. Tinned copper wire leads. Plastic insulation is standard. An extremely long life and high reliability is achieved by the design, the careful selection of materials and methods for production and control. PEG 122 is well suited for applications where life and reliability is of paramount importance. The range is designed specifically to meet the BPO specification for long life tubular electrolytic capacitors.

PEG 122 can be used for timing, filtering, coupling and decoupling.

Basic specifications BPO D2186

IEC 103 Grade 1 category 40/085/56

Approval PEG 122 is approved by British Post Office to spec. D2186


Temperature range —40°C to +85°C (+100°C see Special technical features)

Capacitance tolerance Standard —10 to $+50^{\circ}/_{\circ}$

Special -20 to $+20^{\circ}/_{\circ}$. Add M to order No.

General technical data See "Introduction" Electrolytic capacitors

Case code		Α	В	D	E	F	G	J	L
D*) L _{max}	mm mm	10 20	10 30	13 30	13 40	16 30	16 40	20 40	20 46
Weight approx g Standard box		3	4	6	7	9	11	20	24
content	pcs	200	200	200	200	100	100	100	100

^{*)} Add 0.2 mm to D for max. diameter of insulated case.

STANDARD UNITS

Cap. μF	Rated voltage VDC	Dimension D×L mm (code)	Ripple current') +85°C 100 Hz I mA	Leakage²) current max. μΑ	Impedance 100 kHz, +20°C max. Ω	Order Number³)
1000	10	16×30 (F)	430	64	0.15	PEG 122EF410
2200		20×40 (J)	660	136	0.07 ⁴)	PEG 122EJ422
3300		20×47 (L)	900	202	0.05 ⁴)	PEG 122EL433
100	16	10×20 (A)	120	14	1.1	PEG 122GA310
150		10×30 (B)	180	18	0.73	PEG 122GB315
220		10×30 (B)	220	25	0.50	PEG 122GB322
470		13×30 (D)	320	49	0.23	PEG 122GD347
1000		16×40 (G)	540	100	0.11	PEG 122GG410
2200		20×47 (L)	780	215	0.96 ⁴)	PEG 122GL422
47	25	10×20 (A)	100	11	1.3	PEG 122HA247
100		10×30 (B)	170	19	0.60	PEG 122HB310
220		13×30 (D)	260	37	0.27	PEG 122HD322
470		16×30 (F)	390	75	0.13	PEG 122HF347
680		16×40 (G)	520	106	0.09	PEG 122HG368
1000		20×40 (J)	600	154	0.09	PEG 122HJ410
1500		20×47 (L)	840	229	0.074)	PEG 122HL415
22 33 47 100 150 220 470 680 1000	40	10×20 (A) 10×20 (A) 10×30 (B) 13×30 (D) 13×40 (E) 20×40 (J) 20×47 (L)	80 100 130 190 300 320 470 760 780	9 12 15 28 40 57 117 167 244	2.0 1.4 0.96 0.45 0.20 0.20 0.13 0.04 0.06	PEG 122KA222 PEG 122KA233 PEG 122KB247 PEG 122KD310 PEG 122KD315 PEG 122KE322 PEG 122KJ347 PEG 122KJ368 PEG 122KL410
10 22 47 100 150 220 330 470	63	10×20 (A) 10×20 (A) 10×30 (B) 13×30 (D) 16×40 (G) 20×40 (J) 20×47 (L)	70 80 140 200 260 350 420 550	6 12 22 42 61 87 129 182	4.5 2.0 0.96 0.45 0.30 0.20 0.16 0.12	PEG 122MA210 PEG 122MA222 PEG 122MB247 PEG 122MD310 PEG 122MF315 PEG 122MG322 PEG 122MJ333 PEG 122ML347
2.2	100	10×20 (A)	25	2.2	5.8	PEG 122PA122
10		10×20 (A)	50	10	5.0	PEG 122PA210
22		10×30 (B)	80	17	2.3	PEG 122PB222
33		13×30 (D)	100	24	1.5	PEG 122PD233
47		13×40 (E)	140	32	1.1	PEG 122PE247
100		16×40 (G)	200	64	0.50	PEG 122PG310
150		20×40 (J)	380	94	0.27	PEG 122PJ315
220		20×47 (L)	330	136	0.27	PEG 122PL322

¹⁾ Ripple current at other temperatures and frequencies, see Special technical features.

²⁾ Leakage current after 5 minutes at rated voltage and +20°C.

³) Add M to order No. for $\pm 20\%$ capacitance tolerance. Example PEG 122MG322M.

⁴⁾ Max. impedance at 10 kHz.

0.25 0.20 0.15 0.10 0.10 0.10

SPECIAL TECHNICAL FEATURES

Capacitance is measured at +20°C with 1 kHz and a pola-

rizing voltage of 50— 75° / $_{\circ}$ of rated voltage.

100 Hz

Dissipation factor Rated voltage VDC 10 16 25 40 63 100 tan δ 1 kHz 1.80 1.50 0.70 0.55 0.50 0.55

The dissipation factor is measured at $+20^{\circ}\text{C}$ with 1 kHz and a polarizing voltage of $50-75^{\circ}$ % of rated voltage or with

100 Hz without polarizing voltage.

Discharge operation Capacitance change less than 3% after 106 charges and

discharges.

Leakage curren[†] I ≤ 0.0002 CU

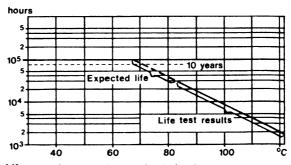
The leakage current shall be measured after 15 minutes with the rated voltage applied.

Prior to the leakage current test the capacitors are preconditioned according to BS 2134 part 1, 1959, para.2.4.1.

Solderability When tested to IEC 68-2-20, test T, solder globule method, the soldering time of the terminals in received condition is

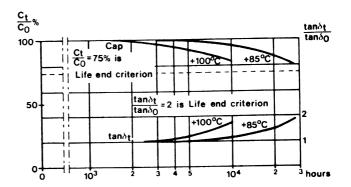
less than 1 s

less than 1 s.


Endurance test 5000 h at $+85^{\circ}$ C and rated DC voltage or the sum of a DC voltage and a peak AC voltage equal to the rated voltage. The

AC voltage shall give the rated ripple current.

After such a test $\frac{\Delta C}{C} \le 15^{\circ}/_{\circ}$, $\frac{\Delta Z}{Z} \le 1$, $\frac{\Delta \tan \delta}{\tan \delta} < 1$ and the


leakage current still below tabulated values.

Life expectancy $> 25\,000\,$ h at $+85^{\circ}$ C and rated voltage or $> 10\,000\,$ h at $+100^{\circ}$ C and $75^{\circ}/_{\circ}$ of rated voltage with less than $3^{\circ}/_{\circ}$ failures. Estimated to $> 40\,$ years at temperatures below 45° C.

Life expectancy vs. temp. at rated voltage.

Typical change of cap. and tanδ at 85°C and 100°C and rated voltage.

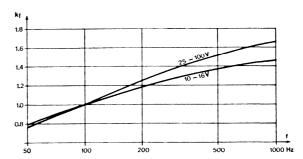
Reliability

Laboratory tests indicate that with 60% confidence level the failure rate will be less than $5\times10^{-7}/h$ at +85% and rated voltage. At +45% this figure is estimated to be less than $5\times10^{-9}/h$.

Failure criteria


Failure criteria for life expectancy and reliability are

$$\frac{\Delta~C}{C}~>25^{0}\!/_{\!0}~{\rm tan}\delta>2\! imes\!{
m tabulated}$$
 value


 $\frac{\Delta Z}{Z} > 100\%$ or a leakage current higher than specified in the table.

Ripple current multipliers

Tabulated ripple currents I_o refer to 100 Hz and $+85^{\circ}C$ ambient temperature. Ripple currents at other temperatures and frequencies can be calculated from the curves below and the expression $I=k_f\times k_1\times I_o$

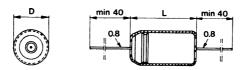
Ripple current multiplier v ambient temperature

Ripple current multiplier v frequency

PEG 123 is a long life electrolytic capacitor encapsulated in an aluminium can with a high purity aluminium disc and rubber gasket seal. Tinned copper wire leads. Plastic insulation is standard.

PEG 123 is designed as an economy range for demanding applications not specifying BPO or telephone grade capacitors. PEG 123 offers the same reliability and performance with a shorter operational life, however exceeding that of the IEC grade 1 specifications.

PEG 123 is suitable for timing, filtering, coupling and decoupling.


Basic specifications IEC 103 Grade 1 category 40/085/56

DIN 41 240 type 1A DIN 40 040 GPF

Temperature range —40°C to +85°C

Capacitance tolerance Standard —10 to +50%

General technical data See "Introduction" Electrolytic capacitors.

Case	ode	Α	В	С	D	E	F	G	Н	J	L
D*) L _{max}	mm mm	10 20	10 30	13 20	13 30	13 40	16 30	16 40	20 30	20 40	20 46
Weight approx	g	3	4	4	6	7	9	11	13	20	24
Standar box content		200	200	200	200	200	100	100	100	100	100

^{*)} Add 0.4 mm to D for max, diameter of insulated case.

STANDARD UNITS

Cap. μF	Rated voltage VDC	Dimension D×L mm (code)	Rippie current ¹) +85°C 100 Hz I _O mA	Leakage²) current max μA	impedance 100 kHz, +20°C max. Ω	Order Number
470	6.3	13×20 (C)	200	22	0.43	PEG 123DC347
1000		13×30 (D)	340	42	0.20	PEG 123DD410
4700		20×40 (J)	860	182	0.05 ³)	PEG 123DJ447
220	10	10×20 (A)	140	17	0.77	PEG 123EA322
470		10×30 (B)	260	32	0.36	PEG 123EB347
1000		13×40 (E)	410	64	0.17	PEG 123EE410
2200		16×40 (G)	640	136	0.09 ³)	PEG 123EG422
2200		20×30 (H)	580	136	0.09 ³)	PEG 123EH422
4700		20×46 (L)	1040	286	0.04 ³)	PEG 123EL447
220	16	13×20 (C)	160	25	0.64	PEG 123GC322
470		13×30 (D)	280	49	0.30	PEG 123GD347
1000		16×30 (F)	430	100	0.14	PEG 123GF410
2200		20×40 (J)	700	215	0.08 ³)	PEG 123GJ422
3300		20×46 (L)	950	321	0.05 ³)	PEG 123GL433
100	25	10×20 (A)	130	19	0.85	PEG 123HA310
220		10×30 (B)	230	37	0.39	PEG 123HB322
470		13×40 (E)	370	75	0.18	PEG 123HE347
1000		16×40 (G)	560	154	0.09	PEG 123HG410
2200		20×46 (L)	920	334	0.05³)	PEG 123HL422
47	40	10×20 (A)	100	15	1.40	PEG 123KA247
68		10×20 (A)	130	20	0.96	PEG 123KA268
100		10×30 (B)	170	28	0.65	PEG 123KB310
100		13×20 (C)	150	28	0.65	PEG 123KC310
220		13×30 (D)	260	57	0.30	PEG 123KD322
470		16×30 (F)	400	117	0.14	PEG 123KF347
1000		20×40 (J)	640	244	0.08	PEG 123KJ410
1500		20×46 (L)	870	364	0.06 ³)	PEG 123KL415
10	63	10×20 (A)	60	10	3.80	PEG 123MA210
22		10×20 (A)	70	12	2.70	PEG 123MA222
47		10×30 (B)	130	22	1.30	PEG 123MB247
47		13×20 (C)	100	22	1.30	PEG 123MC247
100		13×30 (D)	170	42	0.60	PEG 123MD310
220		16×30 (F)	280	87	0.27	PEG 123MF322
470		20×30 (H)	400	182	0.15	PEG 123MH347
680		20×40 (J)	530	261	0.10	PEG 123MJ368
10	100	10×20 (A)	50	10	6.50	PEG 123PA210
22		13×20 (C)	70	17	3.00	PEG 123PC222
47		13×30 (D)	110	32	1.40	PEG 123PD247
100		16×30 (F)	170	64	0.65	PEG 123PF310
220		20×40 (J)	290	136	0.34	PEG 123PJ322
330		20×46 (L)	400	202	0.23	PEG 123PL333

¹⁾ Ripple current at other temperatures and frequencies, see Special technical features.

²⁾ Leakage current after 5 minutes at rated voltage and +20°C.

³⁾ Impedance at 10 kHz.

bump test

SPECIAL TECHNICAL FEATURES

Discharge operation Capacitance change less than 3% after 106 charges and

discharges.

Vibration and 10-500 Hz, 98 m/s 2 or 0.75 mm for 6 h according to IEC

68-2-6, test Fc. 4000 bumps with 390 m/s2 according to IEC

68-2-29, test Eb.

Diameter \geq 16 mm must be clamped. Diameter \leq 13 mm

mounted by their leads.

Solderability When tested to IEC 68-2-20, test T, solder globule method,

the soldering time of the terminals in received condition is

less than 1 s.

Mounting The capacitors may be mounted in any position.

Endurance test 5000 h at +85°C and rated DC voltage or the sum of a DC

voltage and a peak AC voltage equal to the rated voltage.

The AC voltage shall give the rated ripple current.

After such a test $\frac{\Delta~C}{C} \le 15^o/_0$, $\frac{\Delta~Z}{Z} \le 1$, $\frac{\Delta~tan\delta}{tan\delta} < 1$ and the

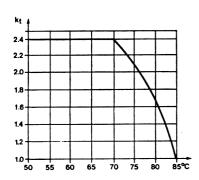
leakage current still below tabulated values.

Life expectancy > 10000 h at $+85^{\circ}\text{C}$ and rated voltage with less than $3^{\circ}/_{\circ}$

failures.

Reliability The failure rate at rated voltage is estimated to be less than

 10^{-6} /h at $+85^{\circ}$ C and 10^{-7} /h at $+40^{\circ}$ C.


Failure criteria are: $\frac{\Delta C}{C} > 25\%, \frac{\Delta Z}{7} > 1, \frac{\Delta \tan \delta}{\tan \delta} > 1$ or a

leakage current exceeding tabulated values.

Ripple current multipliers

Tabulated ripple currents I_o refer to 100 Hz and $+85^{\circ}C$ ambient temperature. Ripple currents at other temperatures and frequencies can be calculated from the curves below and the formula $I=k_f\times k_t\times I_o$

Ripple current multiplier v ambient temperature

Ripple current multiplier v frequency

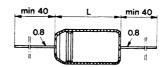
PEG 124 is a long life electrolytic capacitor type encapsulated in an aluminium can with a high purity aluminium disc and rubber gasket seal. Tinned copper wire leads. Plastic insulation is standard. An extremely long life and high reliability is achieved by the design, the careful selection of materials and methods for production and quality assurance. PEG 124 is well suited for applications where life and reliability is of paramount importance.

PEG 124 can be used for timing, filtering, coupling and decoupling.

Basic specifications IEC 103 Grade 1, category 40/085/56

DIN 41 240, type 1A and 1B

Electrical and reliability specifications in DIN 41 255 are met.


Temperature range -40° C to $+85^{\circ}$ C ($+100^{\circ}$ C. See Special technical features)

Capacitance tolerance Standard —10 to $+50^{\circ}/_{\circ}$

Special -20 to $+20^{\circ}/_{\circ}$. Add M to order No.

General technical data See "Introduction" Electrolytic Capacitors.

Case code		Α	В	D	E	F	G	J	L
D*)	mm	10	10	13	13	16	16	20	20
Lmax	mm	20	30	30	40	30	40	40	46
Weight approx	g	3	4	6	7	9	11	20	24
Standard box content	pcs	200	200	200	200	100	100	100	100

^{*)} Add 0.2 mm to D for max, diameter of insulated case.

STANDARD UNITS (12-100 V)

Cap. μF	Rated voltage VDC	Dimension D×L mm (code)	Ripple current') +85°C 100 Hz I mA	Leakage²) current max. μA	Impedance 100 kHz, +20°C max. Ω	Order Number³)
1000 2200	12	16×30 (F) 20×40 (J)	426 720	76 162	0.12 0.07 ⁴)	PEG 124FF410 PEG 124FJ422
100 150 220 330 470 680 1000 1500	16	10×20 (A) 10×30 (B) 10×30 (B) 13×30 (D) 13×30 (D) 13×40 (E) 16×40 (G) 20×40 (J)	120 180 216 264 318 438 540 660	14 18 25 36 49 69 100	1.1 0.73 0.50 0.33 0.23 0.16 0.11 0.094)	PEG 124GA310 PEG 124GB315 PEG 124GB322 PEG 124GD333 PEG 124GD347 PEG 124GE368 PEG 124GG410 PEG 124GJ415
47 100 220 330 470 680 1000	25	10×20 (A) 10×30 (B) 13×30 (D) 13×40 (E) 16×30 (F) 16×40 (G) 20×40 (J)	120 180 270 378 390 516 624	11 19 37 54 75 106 154	1.3 0.60 0.27 0.18 0.13 0.09 0.09	PEG 124HA247 PEG 124HB310 PEG 124HD322 PEG 124HE333 PEG 124HF347 PEG 124HG368 PEG 124HJ410
33 47 68 150 220 330 470 680	40	10×20 (A) 10×20 (A) 10×30 (B) 13×30 (D) 13×40 (E) 16×40 (G) 20×40 (J) 20×40 (J)	96 115 156 240 342 408 432 564	12 15 20 40 57 83 117	1.4 1.1 0.66 0.30 0.20 0.14 0.13 0.09	PEG 124KA233 PEG 124KA247 PEG 124KB268 PEG 124KB315 PEG 124KE322 PEG 124KJ347 PEG 124KJ368
10 15 22 33 47 68 100 150 220 330 470	64	10×20 (A) 10×20 (A) 10×20 (A) 10×30 (B) 10×30 (D) 13×30 (D) 13×30 (D) 16×40 (G) 20×40 (J) 20×46 (L)	51 60 78 114 138 162 204 258 348 420 546	6 10 12 17 22 30 42 62 88 131 184	4.5 3.0 2.0 1.4 0.95 0.66 0.45 0.30 0.21 0.17 0.12	PEG 124MA210 PEG 124MA215 PEG 124MA222 PEG 124MB233 PEG 124MD268 PEG 124MD310 PEG 124MG315 PEG 124MG322 PEG 124MJ333 PEG 124ML347
4.7 10 22 47 100 220	100	10×20 (A) 10×30 (B) 13×30 ((D) 13×40 (E) 16×40 (G) 20×46 (L)	40 48 84 138 204 330	5 10 17 32 64 136	10 5.0 2.3 1.1 0.50 0.27	PEG 124PA147 PEG 124PB210 PEG 124PD222 PEG 124PE247 PEG 124PG310 PEG 124PL322

¹⁾ Ripple current at other temperatures and frequencies, see Special technical features.

 $^{^{\}circ}$) Leakage current after 5 minutes at rated voltage and $+20^{\circ}\text{C}.$

³) Add M to the order No. for \pm 20% capacitance tolerance. Example: PEG 124MG322M.

¹⁾ Max. impedance at 10 kHz.

SPECIAL TECHNICAL FEATURES

Dissipation factor

Rated voltage	VDC	12	16	25	40	64	100
Max. tanδ 100 Hz	°/ ₀	18	15	12	10	10	10

Discharge operation

Capacitance change less than $3^{0}/_{0}$ after 10^{6} charges and discharges.

Vibration and bump test

10—500 Hz, 98 m/s 2 , test Fc according to IEC 68-2-6. 4000 bumps with 390 m/s 2 , test Eb according to IEC 68-2-29.

Diameter \geq 16 mm must be clamped. Diameter \leq 13 mm mounted by their leads.

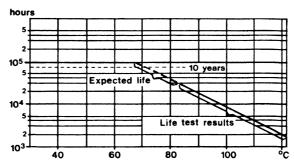
Solderability

When tested to IEC 68-2-20, test T, solder globule method, the soldering time of the terminals in received condition is less than 1 s.

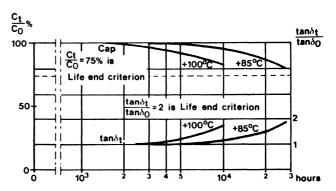
Mounting

The capacitors may be mounted in any position.

Endurance test


5000 h at $+85^{\circ}$ C and rated DC voltage or the sum of a DC voltage and a peak AC voltage equal to the rated voltage. The AC voltage shall give the rated ripple current.

After such a test $\frac{\Delta C}{C} \leq 15^{\circ/_{0}}, \, \frac{\Delta Z}{Z} \leq 1, \, \frac{\Delta \tan \delta}{\tan \delta} < 1$ and


the leakage current still below tabulated values.

Life expectancy

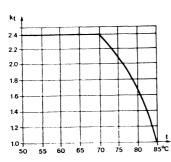
> 25 000 h at +85°C and rated voltage or > 10 000 h at +100°C and 75% of rated voltage with less than 3% failures. Estimated to > 40 years at temperatures below 45°C.

Life expectancy v temp. at rated voltage.

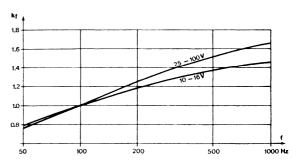
Typical change of cap and tan 8 at +85°C and 100°C and rated voltage.

Reliability

Laboratory tests indicate that with $60^{\circ}/_{\circ}$ confidence level the failure rate will be less than $5\times10^{-7}/h$ at $+85^{\circ}C$ and rated voltage. Corresponding figure at $+45^{\circ}C$ is estimated to be less than $5\times10^{-8}/h$.


Failure criteria

Failure criteria for life expectancy and reliability are $\frac{\Delta C}{C} > 25\%$ $\tan \delta > 2 \times \text{tabulated value}$


 $\frac{\Delta\,Z}{Z}\,>100^{\circ}\!/_{\!\circ}$ or a leakage current higher than specified in the table.

Ripple current multipliers

Tabulated ripple currents I_o refer to 100 Hz and $+85^{\circ}C$ ambient temperature. Ripple currents at other temperatures and frequencies can be calculated from the curves below and the formula $I=k_f\times k_t\times Io$.

Ripple current multiplier v ambient temperature

Ripple current multiplier v frequency

ELECTROLYTIC CAPACITORS

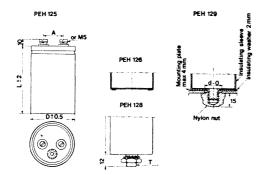
PEH 125-129

PEH 125—129 are high capacitance units encapsulated in aluminium cans sealed with a moulded phenolic lid. A vent protects against excess pressure if capacitors are overloaded. Heavy duty screw terminals.

PEH 125—129 offer high reliability and extended life. These types are mainly intended for filtering in power supplies and for providing high current pulses, for example in computers or thyristor inverters.

Basic specifications IEC 103 Grade 1 category 40/070/56

Rated voltage ≤ 70 VDC can be operated up to $+85^{\circ}$ C as


type 2 category 40/085/56 DIN 41 240 IA DIN 40 040 GSF

Temperature range -40°C to $+85^{\circ}\text{C}$ for rated voltage $\leq 70 \text{ VDC}$

 -40° C to $+70^{\circ}$ C for rated voltage > 70 VDC

Capacitance tolerance $-10^{\circ}/_{\circ}$ to $+50^{\circ}/_{\circ}$

General technical data See "Introduction" Electrolytic capacitors

Dimensions in mm

The hole diameter d mm is important for an exact mounting with a creepage path of 4 mm between mounting plate and capacitor housing.

Case code		N	R	Α	В	D	F
D*)	mm	35	35	50,8	50,8	63,5	76,2
L	mm	78	104	78	104	104	104
d	mm	17	17	17	17	21	21
A	mm	15,4	15,4	22	22	29	35
T	1	M8	M8	M8	M8	M12	M12
Weight approx Standard box	g	110	140	190	270	470	660
content	pcs	80	80	40	40	24	18

^{*)} Add 0,7 mm to D for insulated version.

STANDARD UNITS (10-70 V)

	Rated	Dimension	Ripple	current¹) 00 Hz	tanō	Impedance	Order Number²)
Cap. μF	voltage VDC	D×L mm (code)	A 10 +65°C	+85°C	100 Hz max %	10 kHz, +20°C max. mΩ	stud fixing insulated version
22000	10	35×78 (N)	6.9	1.5	33	17	PEH 129EN522
47000		50.8×78 (A)	12.2	2.6	33	9	PEH 129EA547
100000		63.5×104 (D)	16.0	3.4	58	7	PEH 129ED610
15000	16	35×78 (N)	6.6	1.4	25	17	PEH 129GN515
22000		35×104 (R)	8.7	1.9	27	14	PEH 129GR522
33000		50.8×78 (A)	11.6	2.5	27	9	PEH 129GA533
47000		50.8×104 (B)	14.6	3.1	30	8	PEH 129GB547
68000		63.5×104 (D)	15.7	3.4	40	7	PEH 129GD568
100000		76.2×104 (F)	16.2	3.5	65	8	PEH 129GF610
10000	25	35×78 (N)	6.3	1.4	18	17	PEH 129HN510
15000		35×104 (R)	8.7	1.9	18	14	PEH 129HR515
22000		50.8×78 (A)	11.3	2.4	18	9	PEH 129HA522
33000		50.8×104 (B)	14.4	3.1	22	8	PEH 129HB533
47000		63.5×104 (D)	15.8	3.4	28	7	PEH 129HD547
68000		76.2×104 (F)	15.8	3.4	45	8	PEH 129HF568
6800	40	35×78 (N)	6.2	1.3	13	17	PEH 129KN468
10000		35×104 (R)	8.3	1.8	13	14	PEH 129KR510
15000		50.8×78 (A)	11.1	2.4	13	9	PEH 129KA515
22000		50.8×104 (B)	14.0	3.0	15	8	PEH 129KB522
33000		63.5×104 (D)	15.4	3.3	22	7	PEH 129KD533
47000		76.2×104 (F)	15.4	3.3	33	8	PEH 129KF547
2200 3300 4700 6800 10000 15000 22000	63	35×78 (N) 35×78 (N) 35×104 (R) 50.8×78 (A) 50.8×78 (A) 63.5×104 (D) 76.2×104 (F)	4.6 5.3 7.1 9.5 9.9 14.0 15.0	1.0 1.1 1.5 2.0 2.1 3.0 3.2	8 8 8 9 12	17 17 12 9 9 7	PEH 129MN422 PEH 129MN433 PEH 129MR447 PEH 129MA468 PEH 129MA510 PEH 129MD515 PEH 129MF522
4700	70	50.8×78 (A)	8.0	1.7	8	13	PEH 129NA447
10000		50.8×104 (B)	12.2	2.6	9	8	PEH 129NB510

continued overleaf

PEH 125 for clip fixing uninsulated version

PEH 126 for clip fixing insulated version

PEH 128 for stud fixing uninsulated version

¹⁾ Ripple currents at other temperatures and frequencies, see Special technical features.

²) For other versions replace PEH 129 by:

STANDARD UNITS (100-350 V)

Cap. μF	Rated voltage VDC	Dimension D×L mm (code)	Ripple of A 100 +50°C	Hz (tanð 100 Hz max %	Impedance 10 kHz, +20°C max. mΩ	Order Number²) stud fixing insulated version
1000	100	35×78 (N)	2.9	0.63	13	94	PEH 129PN410
1500		35×104 (R)	4.1	0.87	13	64	PEH 129PR415
2200		50.8×78 (A)	5.3	1.1	13	45	PEH 129PA422
3300		50.8×104 (B)	7.1	1.5	13	31	PEH 129PB433
4700		63.5×104 (D)	8.8	1.9	14	26	PEH 129PD447
8000		76.2×104 (F)	10.9	2.3	16	19	PEH 129PF480
470	160	35×78 (N)	2.4	0.51	10	160	PEH 129QN347
680		35×104 (R)	3.2	0.69	10	120	PEH 129QR368
1000		50.8×78 (A)	4.2	0.90	10	78	PEH 129QA410
1500		50.8×104 (B)	5.7	1.2	10	53	PEH 129QB415
2200		63.5×104 (D)	7.3	1.6	10	38	PEH 129QD422
4000		76.2×104 (F)	9.7	2.1	11	25	PEH 129QF440
330	250	35×78 (N)	1.7	0.36	17	480	PEH 129SN333
470		35×104 (R)	2.4	0.51	17	340	PEH 129SR347
680		50.8×78 (A)	2.9	0.63	17	210	PEH 129SA368
1000		50.8×104 (B)	4.1	0.87	17	160	PEH 129SB410
1500		63.5×104 (D)	5.1	1.1	18	110	PEH 129SD415
2200		76.2×104 (F)	7.0	1.5	17	77	PEH 129SF422
800	300	50.8×104 (B)	3.8	0.81	14	150	PEH 129TB380
2000		76.2×104 (F)	6.9	1.5	14	66	PEH 129TF420
220	350	35×78 (N)	1.5	0.33	12	440	PEH 129UN322
330		35×104 (R)	2.2	0.48	12	290	PEH 129UR333
470		50.8×78 (A)	2.7	0.57	12	210	PEH 129UA347
640		50.8×104 (B)	3.6	0.78	12	150	PEH 129UB364
1000		63.5×104 (D)	4.6	0.99	12	100	PEH 129UD410
1500		76.2×104 (F)	6.3	1.4	12	70	PEH 129UF415

[&]quot;) Ripple currents at other temperatures and frequencies, see Special technical features.

PEH 125 for clip fixing uninsulated version PEH 126 for clip fixing insulated version

PEH 128 for stud fixing uninsulated version

²⁾ For other versions replace PEH 129 by:

Discharge operation

bump test

PEH 125-129

SPECIAL TECHNICAL FEATURES

 $I \le (0.006 \text{ CU} + 4) \mu \text{A}$ Leakage current

> C= rated capacitance in μ F U=rated voltage in volts

Measured at 20°C after 5 minutes at rated voltage.

Capacitance change less than 3% after 106 charges and

discharges.

10-500 Hz, 98 m/s2 or 0.75 mm for 6 h according to IEC Vibration and

68-2-6. test Fc.

4000 bumps with 390 m/s2 according to IEC 68-2-29, test Eb.

 $\leq 5^{\text{o}/\text{o}}.$ No visible damage. Leakage current and $tan\delta$

< stated limit.

The capacitors shall be mounted upright or may be inclined Mounting

to horizontal position if the vent is in the upper half of the lid.

Mounted according to instructions PEH 129 will withstand

1000 VDC for 60 s between capacitor case and chassis.

The endurance test may be carried out for 2000 h at +70°C **Endurance test**

> and rated voltage or the sum of a DC voltage and a peak AC voltage equal to the rated voltage. The AC voltage

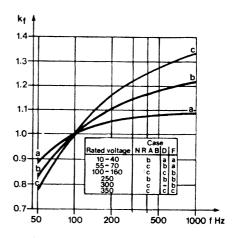
giving the rated ripple current.

After such a test $\frac{\Delta~C}{C}~\leq~15^{o}/_{o},~tan\delta~\leq~1.3$ stated limit and

leakage current still below stated limit.


Capacitors with rated voltage ≤ 70 V may be tested 1000 h at +85°C. Test and requirements otherwise in accordance

with above at +70°C.



Ripple current multipliers

Recommended max. ripple current I_o at 100 Hz and $+70^{\circ}C$ (+85°C for $U_R \leq 70$ VDC) ambient temperature is stated in the table. Ripple currents at other temperatures and frequencies can be calculated from the curves below and the formula $I=k_f\times k_t\times I_o$

Ripple current multiplier v ambient temperature

Ripple current multiplier v frequency

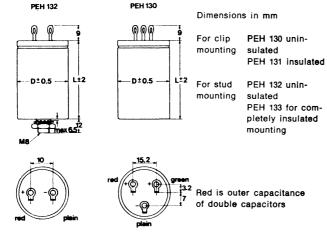
Notes

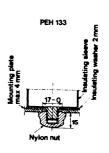
and the state of the
an a
and the second

The PEH 130—133 series offer single or double section electrolytic capacitors encapsulated in aluminium cans sealed with rubber-faced phenolic laminate discs. Solder tag terminals. These types offer high standards of performance and reliability.

PEH 130-133 are mainly intended for filtering or timing in industrial equipment.

Basic specifications IEC 103 Grade 1 category 25/070/56 (40/070/56 for U_R ≤ 63 VDC)


Grade 2 category 25/085/56 (40/085/56 for $U_R < 63 \text{ VDC}$)


DIN 41 240 IA HSF (GSF for $U_R \le 63 \text{ VDC}$)

Temperature range -25°C to $+85^{\circ}\text{C}$ (-40°C to $+85^{\circ}\text{C}$ for $U_{R} \le 63 \text{ VDC}$)

Capacitance tolerance $-10^{\circ}/_{\circ}$ to $+50^{\circ}/_{\circ}$

General technical data See "Introduction" Electrolytic capacitors.

The hole diameter 17 mm is important for an exact mounting with a creepage path of 4 mm between mounting plate and capacitor housing.

Case co	ode	В	С	E	L	М	N	S	х
D*)	mm	25	25	30	35	35	35	40	40
L	mm	50	60	50	50	60	72	72	82
Weight									
approx	g	50	55	65	80	90	100	120	140
Standard box									
content	pcs	140	140	110	80	80	80	50	50

^{*)} Add 0.7 mm to D for insulated version.

STANDARD UNITS (6.3-100 V)

Cap.	Rated voltage	Dimension D×L	Ripple co		tan ô 100 Hz	Impedance 10 kHz,	Order Number²) stud fixing
μF	VDC	mm (code)	l _o A	k _f	max. %	+20°C max. mΩ	insulated version
10000		25×60 (C)	0.71	b	35	23	PEH 133DC510
22000 47000	6.3	35×60 (M) 40×82 (X)	1.2 1.5	a a	45 65	19 13	PEH 133DM52 PEH 133DX547
6800		25×50 (B)	0.58	С	35	25	PEH 133EB468
10000 22000	10	35×50 (L) 35×72 (N)	0.79 1.2	b a	35 40	21 14	PEH 133EL510 PEH 133EN522
4700		25×50 (B)	0.55	c	25	25	PEH 133GB44
10000	16	35×60 (M)	0.92	b	28	21	PEH 133GM51
15000 22000		35×72 (N) 40×82 (X)	1.1 1.4	a a	30 35	14 14	PEH 133GN51 PEH 133GX52
2200		25×50 (B)	0.45	d	25	40	PEH 133HB42
4700		25×60 (C)	0.69	C	25	19	PEH 133HC44
6800 10000	25	35×50 (L) 35×72 (N)	0.77	b	25	24	PEH 133HL460 PEH 133HN51
15000		35 × 72 (N) 40 × 72 (S)	1.1 1.2	b a	25 30	16 16	PEH 133HS51
1000		25×50 (B)	0.35	С	20	80	PEH 133KB41
1500		25×50 (B)	0.42	С	20	53	PEH 133KB41
2200 3300		25×60 (C) 35×50 (L)	0.53	C	20	36	PEH 133KC42
4700	40	35×60 (L)	0.66 0.84	c b	20	34 24	PEH 133KL433 PEH 133KM44
6800		40×72 (S)	1.1	b	20 20	24	PEH 133KS46
10000		40×82 (X)	1.3	a	20	15	PEH 133KX51
1000		25×50 (B)	0.40	d	20	50	PEH 133MB41
1500		25×60 (C)	0.50	d	20	33	PEH 133MC41
2200 3300	63	35×50 (L) 35×72 (N)	0.63	С	20	34	PEH 133ML42 PEH 133MN43
4700		40×72 (S)	0.90 1.1	c b	20 20	22 21	PEH 133MS44
470		25×50 (B)	0.21	b	20	530	PEH 133PB347
1000		35×50 (L)	0.34	b	25	260	PEH 133PL410
2200 3300	100	35×72 (N)	0.61 0.74	b a	30 30	120	PEH 133PN42
3300		40×72 (S)	0.74	ä	30	85	PEH 133PS433

^{&#}x27;) Ripple current versus temperature and frequency for Grade 1 and Grade 2 requirements, see Special technical features.

PEH 130 for clip fixing uninsulated version

PEH 131 for clip fixing insulated version

PEH 132 for stud fixing uninsulated version

²⁾ For other versions replace PEH 133 by:

ELECTROLYTIC CAPACITORS

PEH 130-133

STANDARD UNITS (160-450 V)

μF VDC	mm (code)	lo A	kę	max. %		Order Number²) stud fixing	
330	25×60 (C)	1			+20°C max. Ω	insulated version	
330		0.20	С	20	0.45	PEH 133QC322	
	35×50 (L)	0.29	Č	20	0.32	PEH 133QL333	
470 160	35×60 (M)	0.37	Č	20	0.22	PEH 133QM347	
680	35×72 (N)	0.48	С	20	0.15	PEH 133QN368	
1000	40×82 (X)	0.66	С	20	0.11	PEH 133QX410	
100	25×50 (B)	0.12	b	20	2.2	PEH 133SB310	
150	25×60 (C)	0.16	b	20	1.5	PEH 133SC315	
220 250	35×50 (L)	0.22	b	20	1.0	PEH 133SL322	
330	35×60 (M)	0.29	b	20	0.67	PEH 133SM333	
470	40×72 (S)	0.40	b	20	0.47	PEH 133SS347	
47	25×50 (B)	0.09	d	20	2.8	PEH 133UB247	
68	25×50 (B)	0.11	d	20	1.9	PEH 133UB268	
100	30×50 (E)	0.15	d	20	1.3	PEH 133UE310	
150	35×50 (L)	0.20	d	20	0.87	PEH 133UL315	
220	35×72 (N)	0.29	d	20	0.59	PEH 133UN322	
330	40×72 (S)	0.40	С	20	0.39	PEH 133US333	
22	25×50 (B)	0.06	d	20	5.9	PEH 133YB222	
33	25×50 (B)	0.08	ď	20	3.9	PEH 133YB233	
47 69 450	30×50 (E)	0.11	ď	20	2.8	PEH 133YE247 PEH 133YL268	
00	35×50 (L) 35×72 (N)	0.14	d	20	1.9	PEH 133YN310	
100 150	40×72 (S)	0.20	d	20	1.3	PEH 133YS315	
150	40 / 12 (3)	0.26	d	20	0.87	FER 13313313	
100 + 100 250	35×50 (L)	0.15	b	20	2.2	PEH 133SL906	
32+32 350	35×50 (L)	0.10	d	20	4.1	PEH 133UL903	
100+100	35×72 (N)	0.20	d	20	1.3	PEH 133UN906	
8+8	35×50 (L)	0.04	d	20	16.3	PEH 133YL901	
16+16 450	35×50 (L)	0.06	ď	20	8.1	PEH 133YL902	
32+32	35×50 (L)	0.09	d	20	4.1	PEH 133YL903	
50+50	35×72 (N)	0.14	d	20	2.6	PEH 133YN905	

¹⁾ Ripple current versus temperature and frequency for Grade 1 and Grade 2 requirements, see Special technical features. Tabulated values are for outer capacitance of double capacitors. Multiply by 0.7 for inner capacitance.

PEH 130 for clip fixing uninsulated version

PEH 131 for clip fixing insulated version

PEH 132 for stud fixing uninsulated version

²⁾ For other versions replace PEH 133 by:

SPECIAL TECHNICAL FEATURES

Leakage current

 $I_1 < 0.006 C_R U_R + 4 \mu A$ C_R=rated capacitance in µF U_R = rated voltage in volts

Discharge operation

Capacitance change less than 30/0 after 106 charges and

discharges.

Vibration and bump test

10-500 Hz, 98 m/s2 or 0.75 mm for 6 h according to IEC 68-2-6 test Fc. 4000 bumps according to IEC 68-2-29, test Eb.

 $\frac{\Delta C}{C} \leq 5^{0}/_{0}$. No visible damage. Leakage current and tan 8

 \leq stated limits.

Solderability

The solderability meets the requirements in IEC 68-2-20, test,

T, solder bath method.

Mounting

The capacitors may be mounted in any position. However, upright mounting is to be preferred.

Endurance test

The capacitors fulfil the requirements in IEC publ. 103 for

Grade 1 after 2000 h at +70°C

$$\frac{\Delta~C}{C} \leq 15^{0}/_{0}~(10^{0}/_{0}~for~U_{R} > 160~V),$$

 $tan\delta \leq 1.3 \times specified limits$, $Z_{10 \text{ kHz}} \leq 2 \times \text{specified limits}$ leakage current \leq specified limits

Grade 2 after 2000 h*) at +85°C

$$\frac{\Delta C}{C} \le 25^{\circ}/_{\circ} (15^{\circ}/_{\circ} \text{ for } U_{R} > 160 \text{ V}),$$

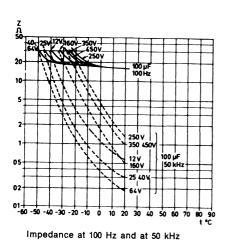
 $tan\delta \leq 1.5 \times specified limits$,

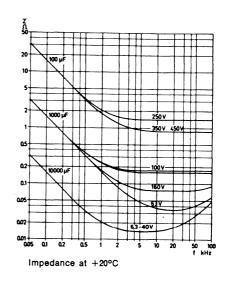
 $Z_{10 \text{ kHz}} \leq 3 \times \text{specified limits},$

leakage current ≤ specified limits

During the test the capacitors can be loaded with rated voltage or with an AC voltage, giving the rated ripple current, superimposed on a DC voltage so that the sum of DC plus peak AC voltage equals the rated voltage.

^{*)} IEC publ. 103 specifies only 1000 h.

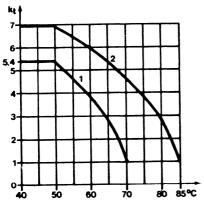

Impedance

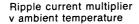

Typical values of impedance for 100 μF are given below. Impedance for other capacitances (C) can be calculated from

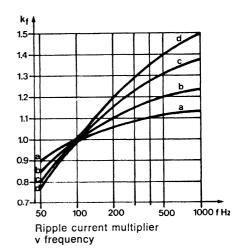
$$Z_C = \, \frac{Z_{100} \! \times \! 100}{C} \; ohm$$

 $Z_{100} = impedance$ from diagram.

 $C = capacitance in \mu F$




PEH 130-133


Ripple current multipliers

Tabulated ripple currents I_o refer to 100 Hz and an ambient temperature of $+70^{\circ}\text{C}$ for Grade 1 and $+85^{\circ}\text{C}$ for Grade 2 requirements. Ripple currents at other temperatures and frequencies can be calculated from the curves below and the formula $I=k_f\times k_1\times I_o$. Applicable frequency curve is stated in the table.

1=For Grade 1 requirements 2=For Grade 2 requirements

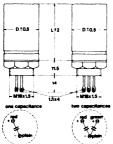
ELECTROLYTIC CAPACITORS

PEH 140-144

PEH 140—144 are electrolytic capacitors with one or two capacitances encapsulated in an aluminium can sealed with a rubber-faced laminate disc. The aluminium can is provided with a screw socket with solder terminals fed through for wiring under the chassis.

PEH 140-144 are maintenance types.

Basic specification IEC 103 type 2 category 25/070/56

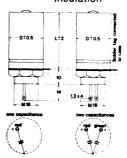

Temperature range —25°C to +70°C

Capacitance tolerance —20 to $+100^{\circ}/_{\circ}$ for $U_{R} \leq 100 \text{ VDC}$

 $-20 \text{ to } + 50^{\circ}/_{\circ} \text{ for } \text{U}_{\text{R}} > 100 \text{ VDC}$

Rated voltage range 25 VDC to 450 VDC

PEH 140 uninsulated PEH 141 outer plastic insulation


Hole diameter in chassis 18.5-0 mm.

Red is outer capacitance at multi-capatance capacitors.

Dimensions in mm.

PEH 141 has an insulating washer for insulating case from chassis.

PEH 143 uninsulated PEH 144 outer plastic insulation

Case size v max capacitance²)

D¹) mm L mm	25 45	25 52	25 62	30 52	30 62	35 52	35 62	35 74
			N	lax capa	citance i	n μF		
U _R 25 VDC	1000			2000			5000	
35 VDC	800	1000				2000		
55 VDC	500		1000				2000	
70 VDC	250	500				1000		
100 VDC	500	600	800	900	1200	1300	1500	2200
160 VDC	150	180	240	270	360	390	500	620
250 VDC	82	100	140	160	200	220	270	360
350 VDC	50	60	82	95	120	130	150	220
450 VDC	25	30	40	47	60	62	82	100

¹⁾ Add 0.7 mm to D for outer plastic insulation.

⁷⁾ The sum of capacitances of multi-capacitance capacitors.

STANDARD UNITS (PEH 140-141)

Cap μF	Rated voltage VDC	Dimension D×L mm (code)	Order Number
1000	25	25×45 (A)	PEH 1411E/29
5000		35×62 (M)	PEH 1411E/221
800	35	25×45 (A)	PEH 1411E/328
1000		25×45 (A)	PEH 1411E/127
2000		30×52 (G)	PEH 1411E/125
500	55	25×45 (A)	PEH 1401E/37
1000		25×62 (C)	PEH 1411E/38
2000		35×62 (M)	PEH 1411E/39
250	70	25×45 (A)	PEH 1401E/248
500		25×52 (B)	PEH 1411E/239
1000		35×52 (L)	PEH 1401E/241
1000		35×52 (L)	PEH 1411E/241
200	100	25×45 (A)	PEH 1411E/46
500		30×62 (H)	PEH 1411E/47
200	350	35×62 (M)	PEH 1411E/173
16	450	25×45 (A)	PEH 1411E/83
32		25×62 (C)	PEH 1411E/84
50 + 50	300	35×62 (M)	PEH 1412E/406
50 + 50	350	30×52 (G)	PEH 1412E/175
8+8	450	25×45 (A)	PEH 1412E/86
32+32		35×52 (L)	PEH 1412E/88

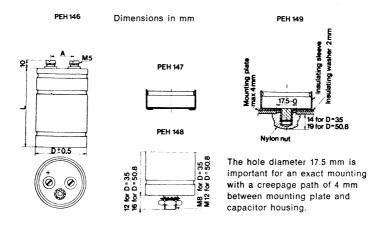
STANDARD UNITS (PEH 143-144)

1000	35	25×52 (B)	PEH 1431E/127
500 1000	70	25×52 (B) 35×52 (L)	PEH 1431E/239 PEH 1431E/241
500	160	35×62 (M)	PEH 1431E/251
25 + 25	300	25×45 (A)	PEH 1432E/408

PEH 146—149 are long life, high capacitance electrolytic capacitors in cylindrical aluminium cans. Moulded lid with safety vent. Heavy duty screw terminals.

These types have high ripple current ratings and long life at high temperatures. They are intended for filtering or energy storage under severe ambient conditions or for applications where life and reliability is of paramount importance.

Basic specifications IEC 103 grade 1, category 40/085/56


DIN 41 240 type 1A DIN 40 040 class GPF

Electrical ratings in DIN 41 247 are met.

Temperature range —40°C to +85°C

Capacitance tolerance $-10 \text{ to } +50^{\circ}/_{\circ}$

General technical data See "Introduction" Electrolytic capacitors

Case code		Α	В	С	D	G	Н
D¹) L _{max} ¹)	mm mm	35 54	35 65	35 83	35 115	50.8 83	50.8 115
Α	mm	15.4	15.4	15.4	15.4	22	22
Weight approx Standard box	g	90	100	115	150	260	350
content	pcs	80	80	80	80	40	40

¹⁾ Add 0.8 mm to D and 2 mm to L for insulating sleeve.

STANDARD UNITS

1	1	Ripple current¹)		tanô	Impedance		
Cap.	Rated	Dimension	A	100 Hz	100 Hz,	10 kHz,	Order Number ²)
μF	voltage VDC	D×L mm (code)	+50°C	+85°C	+20°C	+20°C	stud fixing insulated version
		iiiii (code)		(I _o)	max %	max. mΩ	
10000		35×54 (A)	7.1	1.9	30	31	PEH 149EA510
22000	10	35×83 (C)	12.5	3.3	30	15	PEH 149EC522
47000		50.8×83 (G)	17.9	4.7	40	10	PEH 149EG547
6800		35×54 (A)	6.7	1.8	22	31	PEH 149GA468
10000		35×65 (B)	8.7	2.3	22	22	PEH 149GB510
22000	16	35×115 (D)	16.2	4.3	22 30	11 10	PEH 149GD522 PEH 149GG533
33000 47000		50.8×83 (G) 50.8×115 (H)	17.4 23.7	4.6 6.3	30 30	7	PEH 149GG533 PEH 149GH547
4/000			l				
4700		35×54 (A)	6.2	1.7	18	31	PEH 149HA447
6800		35×65 (B)	8.1	2.1	18	22	PEH 149HB468
10000 15000	25	35×83 (C) 35×115 (D)	10.6 15.1	2.8 4.0	18 18	15 11	PEH 149HC510 PEH 149HD515
22000		50.8×83 (G)	16.5	4.4	22	10	PEH 149HG522
33000		50.8×115 (H)	22.7	6.0	22	7	PEH 149HH533
2200		35×54 (A)	5.3	1.4	12	45	PEH 149KA422
3300		35×54 (A)	6.4	1.7	12	31	PEH 149KA433
4700		35×65 (B)	8.1	2.1	12	22	PEH 149KB447
6800	40	35×83 (C)	10.7 15.0	2.8 4.0	12 12	15	PEH 149KC468
10000 10000		35×115 (D) 50.8×83 (G)	15.0	4.0	12	11 12	PEH 149KD510 PEH 149KG510
15000		50.8×83 (G)	16.2	4.3	15	10	PEH 149KG515
22000		50.8×115 (H)	22.4	5.9	15	7	PEH 149KH522
1000		35×54 (A)	4.0	1.1	10	70	PEH 149MA410
1500		35×54 (A)	5.0	1.3	10	49	PEH 149MA415
2200	60	35×65 (B)	6.4	1.7	10	34	PEH 149MB422
3300	63	35×83 (C) 35×115 (D)	8.7 12.1	2.3 3.2	10	23 16	PEH 149MC433
4700 6800		50.8×83 (G)	14.0	3.2	10 12	16	PEH 149MD447 PEH 149MG468
10000		50.8×115 (H)	19.2	5.1	12	10	PEH 149MH510
470		35×54 (A)	2.5	0.7	12	125	PEH 149PA347
680		35×54 (A)	3.0	0.8	12	89	PEH 149PA368
1000	100	35×65 (B)	3.9	1.0	12	60	PEH 149PB410
2200		35×115 (D)	7.5	2.0	12	28	PEH 149PD422
2200 4700		50,8×83 (G) 50.8×115 (H)	9.0 12.7	2.3 3.4	12 14	30 15	PEH 149PG422 PEH 149PH447
4700		30.0 × 113 (H)	12.1	J.4	. 14	13	FEN 149FN44/

¹⁾ Ripple current at other temperatures and frequencies, see Special technical features.

²⁾ For other versions replace PEH 149 by:

PEH 146 for clip fixing uninsulated version

PEH 147 for clip fixing Insulated version

PEH 148 for stud fixing uninsulated version

SPECIAL TECHNICAL FEATURES

Discharge operation Capacitance change less than 3% after 106 charges and

discharges.

Terminals The screws allow for a connector thickness of max 4 mm.

Vibration and 10—500 Hz, 98 m/s² or 0.75 mm for 6 h according to IEC bump test 68-2-6, test Fc. 4000 bumps with 390 m/s² according to IEC

bump test 68-2-6, test Fc. 4000 bumps with 390 m/s² according to IEC 2 C

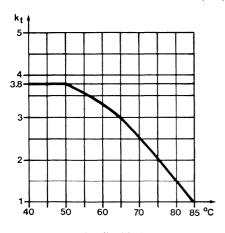
68-2-29, test Eb. $\frac{\Delta C}{C} \le 5^{0}$ /o. No visible damage. Leakage

current and $tan\delta \leq stated limit$.

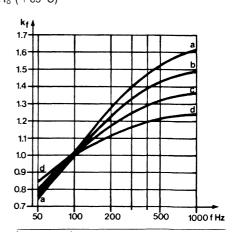
Mounting The capacitors shall be mounted upright or inclined to max

horizontal position with the vent in the upper half of the lid.

Endurance test 5000 h at $+85^{\circ}$ C and rated DC voltage or the sum of a DC

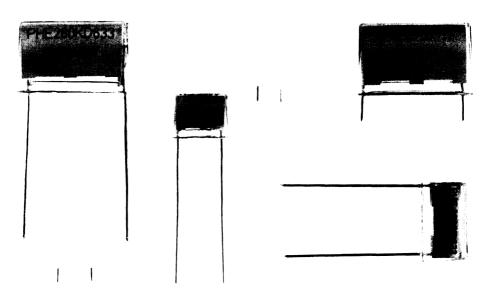

and peak AC voltage equal to the rated voltage. The AC voltage shall give the rated ripple current at $+85^{\circ}$ C.

After such a test $\frac{\Delta~C}{C}~\leq 15^{\text{0/o}},~tan\delta~max~1.3\times tabulated~limits$

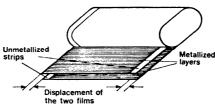

and the leakage current still below specified limits.

Ripple current multipliers

Tabulated ripple currents I_o refer to 100 Hz and $+85^{\circ}C$ ambient temperature. Ripple current at other temperatures and frequencies can be calculated from the curves below and the formula $I=k_f\times k_t\times I_o$ ($+85^{\circ}C$)


Applicable k₁ curves for diameter and rated voltage

Diam.	Rated voltage VDC						
mm	10	16	25	40	63	100	
35	С	С	b	b	а	а	
50.8	d	d	d	d	С	b	


INTRODUCTION

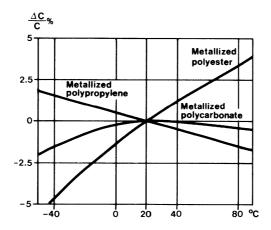
This section covers three various basic designs of metallized film capacitors.

- Metallized Polyester (MKT)
- Metallized Polycarbonate (MKC)
- Metallized Polypropylene (MKP)

The letters in bracket denotes a short form dielectric family designation used in Germany.

In the metallized film capacitor the electrodes have been deposited under vacuum on the plastic film dielectric. The metallized film is wound to a capacitor winding. Contact to the metal layers is obtained by spraying the ends of the winding with a special metal alloy. This method results in a low-inductance capacitor.

SPECIFICATIONS


Test methods applied shall be in accordance with IEC publications 384-1 and 68-2.

APPLICATION

These capacitors are mainly intended for electronic equipment with DC or, compared with DC ratings, low AC voltages. When used at non-sinusoidal or pulse voltages the information under "PULSE OPERATION" must be considered.

CAPACITANCE

The capacitance shall be measured with 1 kHz, 20°C. Typical capacitance change with temperature is shown in the figure below.

RATED VOLTAGE, CATEGORY VOLTAGE

Rated voltage is the highest voltage that may be continuously applied to the capacitor up to the rated temperature which is, for all types, +85°C.

Category voltage is the highest voltage that may be continuously applied to the capacitor at the upper category temperature.

TEST VOLTAGE

The test voltage between terminals stated in the type specifications may be applied for 2 s at acceptance tests and for 60 s at type tests. Self-healings are allowed to occur.

CATEGORY TEMPERATURE RANGE

The category temperature range is the range of ambient temperatures for which the component has been designed to operate continuously.

CLIMATIC CATEGORY

The climatic category states the category temperature range and the humidity class. For example 40/100/56 for -40° C to $+100^{\circ}$ C. 56 states that the steady state humidity test according to IEC 68-2-3, test Ca, shall run for 56 days. The requirements after the test are stated in the type specifications.

PULSE OPERATION

Capacitors loaded with non-sinusoidal voltage pulses with fast rise or decay time (high du/dt) will be exposed to high current pulses. In order not to overload the internal connections, the current must be limited. The current limits for a specific type are dependent on

amplitude and form of the pulse

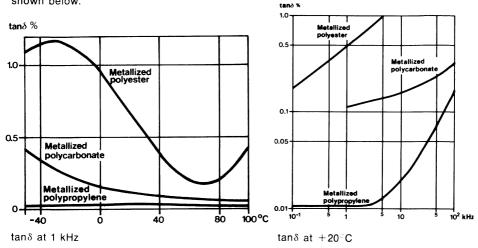
rated voltage of the capacitor

capacitance

geometrical configuration of the winding

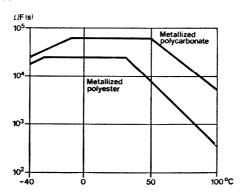
At repeat pulse operation selfheating, ambient temperature and means of cooling would set the load limit.

Pulse current limits are commonly expressed in the form of max. allowed du/dt in volts per microsecond. The figures stated in the type specifications refer to an unlimited number of pulses charging to or decharging from rated voltage U_R . Min. resistance in series to the capacitor is then


$$R = \begin{array}{c} U_R \\ \hline C \times (du/dt) \end{array} \hspace{0.5cm} \begin{array}{c} U_R \\ R \\ \hline C \times (du/dt) \end{array} = \begin{array}{c} \text{min. series resistance in } \Omega \\ C \\ (du/dt) \end{array} = \begin{array}{c} \text{max. allowed V/} \mu s \end{array}$$

For pulses with an amplitude lower than $U_{\rm R}$ higher du/dt than stated in the type specifications can be allowed. Please consult Rifa.

DISSIPATION FACTOR


The dissipation factor is dependent on temperature and frequency, and also on the capacitance value. Max. values are stated in the type specifications. Typical curves are shown below.

INSULATION RESISTANCE

Minimum values of the insulation resistance between terminals stated in the type specifications refer to measurements after the voltage has been applied for 1 min ± 5 s at +20 C.

The insulation resistance of a capacitor is dependent on voltage, temperature and time elapsed after connection of a voltage. Typical values of product of capacitance and resistance v temperature are given below. These curves refer to stabilized conditions with rated voltage applied.

SELF-HEALING

These capacitors are self-healing in the sense that they have the ability to restore instantaneously the electrical properties after a local break-down in the dielectric. However, to obtain reliable self-healings the capacitor should not be applied to voltage sources where the available power is high and uncontrolled transient voltages can occur. Such a source is for example the mains.

SOLDERING

When mounted on a printed circuit board any normal method of soldering the capacitors may be employed without the need for a heat sink.

These capacitors are resistant to any dissolvent normally employed in flow-soldering techniques.

The solderability of the leads are tested according to IEC 68-2-20 A, test Tb, method IA. The wetting time cleaning shall be less than 1 s.

VIBRATION AND BUMP TEST

When mounted on a printed circuit board the capacitors will withstand vibration 10—2000 Hz or for PHE 425 10—500 Hz, 0.75 mm displacement or 98 m/s² according to IEC 68-2-6, test Fc or 4000 bumps with 390 m/s² according to IEC 68-2-29, test Eb. $\frac{\Delta C}{C} \leq 0.5^{\circ}/_{\circ}.$

Notes
······································
<u></u>

Capacitance range	Rated voltage VDC	Category temp. range °C	Applicable spec.	Type No.	Type spec. page			
GRADE 1 (Capacito	rs for high (quality requireme	nts)					
Metallized polyester								
0.047—4.7 μF 0.015—2.2 μF 0.01—0.47 μF	100 250 400	—55 to +100	DIN 44 122 IEC 384-2	PHE 243	70			
0.022—0.10 μF 0.010—0.033 μF 1000—6800 pF	100 250 400	—55 to +100	IEC 384-2	PHE 353	82			
Metallized								
polycarbonate 0.068—6.8 μF 0.022—2.2 μF	100 160	—55 to +100	DIN 44 116	PHE 307	78			
0.010—1.0 μF 10 μF	400 63	—40 to +85		PHZ 2039	90			
Metallized polypropylene 0.035—0.14 μF 0.01—0.035 μF	63 100	—55 to +85		PHE 425	86			
GRADE 2 (Capacitors for normal quality requirements)								
Metallized								
polyester 1000 pF—4.7 μF	100—400	—40 to +100	DIN 44 112	PHE 280	74			

METALLIZED POLYESTER CAPACITORS

PHE 243

for high quality requirements

PHE 243 has a metallized polyester winding and is vacuum encapsulated in a self-extinguishing epoxy resin. The embedded metal label provides an excellent humidity protection. Reliable operation under pulse conditions is a special feature of this range. The terminal leads are of tinned copper clad steel wires.

Basic specification DIN 44 122, DIN 40 040 FMD

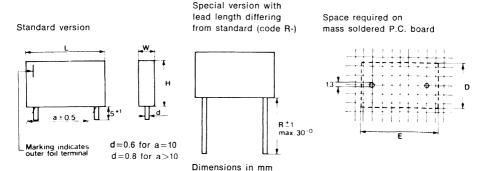
Climatic category 55/100/56

Temperature range

Rated -55° C to $+85^{\circ}$ C Category -55° C to $+100^{\circ}$ C

Voltage

Rated VDC (U_R) 100, 250, 400 VDC


Category VDC (U_c) 0.7× U_R

Rated VAC 63, 100, 160 VAC up to +85°C and 500 Hz

Test $1.6 \times U_R$

Capacitance tolerance Standard $\pm 10^{\circ}/_{\circ}$, special $\pm 5^{\circ}/_{\circ}$

General technical data See "Introduction" metallized film capacitors.

Orderina

Standard version State the order No. in the list of standard units.

Special version Add the special version code to the standard unit order No.

Example: PHE 243DA 547J for $C_R \pm 5^{\circ}/_{\circ}$

PHE 243DA547JR30 for $C_{\rm R}$ $\pm 5\%$ and lead length

30⁻⁰ mm.

STANDARD UNITS

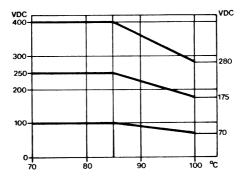
Cap. μF			nensions mm		Space requirements in mm		Order Number	Weight approx		
•	L	W	Н	а	D	E		g		
100 VDC 63 VAC (U _R)										
0.047	13.0	3.9	7.5	10.0	4.4	14.0	PHE 243DA547	0.6		
0.068	13.0	3.9	7.5	10.0	4.4	14.0	PHE 243DA568	0.6		
0.10	13.0	3.9	7.5	10.0	4.4	14.0	PHE 243DA610	0.6		
0.15	13.0	5.1	10.5	10.0	5.6	14.0	PHE 243DA615	1.0		
0.22	13.0	5.1	10.5	10.0	5.6	14.0	PHE 243DA622	1.0		
0.33	18.0	5.5	10.5	15.0	6.0	19.0	PHE 243DB633	1.5		
0.47	18.0	5.5	10.5	15.0	6.0	19.0	PHE 243DB647	1.5		
0.68	18.0	7.0	12.0	15.0	7.5	19.0	PHE 243DB668	2.5		
1.0	18.0	7.5	13.5	15.0	8.0	19.0	PHE 243DB710	2.5		
1.5	26.0	7.0	13.0	22.5	7.5	27.0	PHE 243DD715	3.3		
2.2	26.0	8.0	16.5	22.5	8.5	27.0	PHE 243DD722	4.2		
3.3	26.0	10.0	19.0	22.5	10.5	27.0	PHE 243DD733	6.7		
4.7	31.0	10.5	19.0	27.5	11.0	32.0	PHE 243DF747	7.8		
	160 VAC		-							
	ī				l		l			
0.015	13.0	3.9	7.5	10.0	4.4	14.0	PHE 243HA515	0.6		
0.022	13.0	3.9	7.5	10.0	4.4	14.0	PHE 243HA522	0.6		
0.033	13.0	3.9	7.5	10.0	4.4	14.0	PHE 243HA533	0.6		
0.047	13.0	4.8	10.5	10.0	5.6	14.0	PHE 243HA547	1.0		
0.068	13.0	5.1	10.5	10.0	5.6	14.0	PHE 243HA568	1.0		
0.1	18.0	5.5	10.5	15.0	6.0	19.0	PHE 243HB610	1.5		
0.15	18.0	5.5	10.5	15.0	6.0	19.0	PHE 243HB615	1.5		
0.22	18.0	7.0	12.0	15.0	7.5	19.0	PHE 243HB622	2.5		
0.33	18.0	7.5	13.5	15.0	8.0	19.0	PHE 243HB633	2.5		
0.47	25.0	6.5	13.5	22.5	7.0	26.5	PHE 243HD647	3.3		
0.68	26.0	7.2	15.5	22.5	7.7	27.0	PHE 243HD668	4.1		
1.0	26.0	10.0	19.0	22.5	10.5	27.0	PHE 243HD710	6.7		
1.5	31.0	10.5	19.0	27.5	11.0	32.0	PHE 243HF715	7.8		
2.2	31.0	12.5	20.5	27.5	13.0	32.0	PHE 243HF722	12.0		
400 VDC	200 VAC	(U _R)		· · · · · · · · · · · · · · · · · · ·			I	<u> </u>		
0.010	13.0	3.9	7.5	10.0	4.4	14.0	PHE 243KA510	0.6		
0.015	13.0	4.8	10.5	10.0	5.6	14.0	PHE 243KA515	1.0		
0.022	13.0	5.1	10.5	10.0	5.6	14.0	PHE 243KA522	1.0		
0.022	13.0	5.1	10.5	10.0	5.6	14.0	PHE 243KA533	1.0		
0.033	18.0	5.5	10.5	15.0	6.0	19.0	PHE 243KB547	1.5		
0.047	18.0	5.5	10.5	15.0	6.0	19.0	PHE 243KB568	1.5		
0.066	18.0	7.0	12.0	15.0	7.5	19.0	PHE 243KB610	2.5		
	18.0	7.0 9.0	14.5	15.0	9.5	19.0	PHE 243KB610 PHE 243KB615	3.2		
0.15				10.U			PHE 243KB615 PHE 243KD622	4.1		
0.22	26.0	7.2	15.5	22.5	7.7	27.0				
0.33	26.0	8.0	16.5	22.5	8.5	27.0	PHE 243KD633 PHE 243KD647	4.2 6.7		
0.47	26.0	10.0	19.0	22.5	10.0	27.0	FITE 243KU04/	ו.ס. ו		

SPECIAL TECHNICAL FEATURES

Dissipation factor $\tan \delta \leq 3\%$ at 100 kHz for C $< 0.1 \,\mu\text{F}$

tan $\delta \leq 1.5^{\circ}/_{\circ}$ at 10 kHz for C $\leq 1.0~\mu F$ tan $\delta \leq 0.8^{\circ}/_{\circ}$ at 1 kHz for C $\leq 1.0~\mu F$ tan $\delta \leq 1.0^{\circ}/_{\circ}$ at 1 kHz for C $> 1.0~\mu F$

Insulation resistance


Between terminals > 30 000 M Ω for C \leq 0.33 μ F

> 10 000 Ω F (s) for C > 0.33 μ F

Terminals-case > 30 000 M Ω

Measured at +20°C after 1 minute with 100 VDC.

Voltage derating

Humidity test

After a 56 days test at $+40^{\circ}$ C and 90 to 95% R.H. the following massive at $+40^{\circ}$ C and 90 to 95% R.H.

lowing requirements are met:

Change of capacitance less than 3%.

Absolute change of tanδ less than 0.3% at 1 kHz.

Insulation resistance higher than 50% of limits specified above.

Pulse operation

The capacitors meet the DIN 44122 requirements for sample test with 20000 discharges at 10 times the max. du/dt values given in the table.

Rated voltage	Max. du/dt in $V/\mu s$ for lead spacing in mm						
ADC	10	15	22.5	27.5			
100	6	3	2	1.5			
250	10	5	3	2.5			
400	14	7	4				

METALLIZED POLYESTER CAPACITORS

PHE 243

Marking

Capacitors are marked with code No., rated capacitance, capacitance tolerance, rated voltage, outer electrode terminal, climatic category according to DIN or IEC, manufacturing date, Rifa symbol and DIN 44 122 if in accordance with this specification.

PHE 280

for normal requirements

PHE 280 has a metallized polyester winding and is vacuum encapsulated in epoxy resin. The embedded metal label provides an excellent humidity protection. The terminal leads are of tinned copper clad steel.

Basic specification DIN 44 112 Blatt 1 and Blatt 2 DIN 40 040 GMF

Climatic category 40/100/56

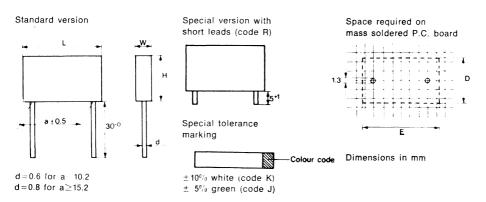
Temperature range

Rated -40°C to $+85^{\circ}\text{C}$ Category -40°C to $+100^{\circ}\text{C}$

Voltage

Rated VDC (U_R) 100, 250, 400 VDC

Category VDC (U_c) 0.85 $\times U_R$


Rated VAC 63, 160, 200 VAC up to $\pm 85^{\circ}$ C and 500 Hz.

Test $1.6 \times U_R$

Capacitance tolerance Standard $\pm\,10^{\circ}/_{\circ}$ for C $\geq\,0.1~\mu\text{F}$

 $\pm 20^{\circ}$ /o for C < 0.1 μ F

General technical data See "Introduction" metallized film capacitors.

Ordering

Standard version State the order No. in the list of standard units.

Special version Add the special version code to the standard unit order No.

Example: PHE 280DK522J for $C_R \pm 5\%$

PHE 280DK522JR5 for $C_R \pm 5^{\circ}/_{\circ}$ and leads 5^{+1} .

STANDARD UNITS

Сар			nensions mm			require-	Order Number	Weight approx.
μ F	L	w		a*	D	E	Graen Maniper	g
100 VDC	63 VAC	(U _R)		-				
0.022 0.033 0.047 0.047 0.068 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7	10.5 10.5 10.5 13.0 10.5 13.0 13.0 13.0 13.0 18.0 18.0 18.0 26.0 26.0 26.0	4.0 4.0 3.9 4.0 3.9 4.0 3.9 5.1 5.5 7.5 7.5 7.5 7.0 8.0 10.0	6.8 6.8 6.8 7.5 9.0 7.5 10.5 10.5 10.5 13.5 13.5 13.0 16.5 19.0	7.6 7.6 7.6 10.2 7.6 10.2 10.2 15.2 15.2 15.2 15.2 22.5 22.5 27.5	4.5 4.5 4.4 4.4 4.4 4.5 4.4 4.4 5.6 6.0 8.0 8.0 7.5 8.5 10.5 11.0	11.5 11.5 11.5 14.0 14.0 14.0 14.0 14.0 19.0 19.0 19.0 27.0 27.0 27.0 27.0 32.0	PHE 280DK522 PHE 280DK533 PHE 280DK547 PHE 280DA547 PHE 280DA568 PHE 280DA610 PHE 280DA615 PHE 280DA615 PHE 280DA622 PHE 280DB633 PHE 280DB647 PHE 280DB710 PHE 280DB710 PHE 280DD722 PHE 280DD733 PHE 280DF747	0.5 0.5 0.5 0.6 0.6 0.6 0.6 1.0 1.5 1.5 2.5 2.5 3.3 4.2 6.7 7.8
250 VDC	160 VAC	C (U _R)						
0.010 0.010 0.015 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.33 0.47 0.47	10.5 13.0 10.5 13.0 13.0 13.0 13.0 18.0 18.0 18.0 23.0 25.5 26.0 26.0 31.0	4.0 3.9 4.0 3.9 3.9 5.1 5.5 7.5 7.5 7.5 7.6 6.5 7.2 10.0 10.5 12.5	6.8 7.5 6.8 7.5 7.5 10.5 10.5 10.5 13.5 13.5 13.5 13.5 13.5 15.5 19.0 19.0 20.5	7.6 10.2 7.6 10.2 10.2 10.2 10.2 15.2 15.2 15.2 20.3 20.3 22.5 22.5 27.5 27.5	4.5 4.4 4.5 4.4 4.4 5.6 6.0 8.0 8.0 8.1 8.0 81. 7.7 7.7 11.0 13.0	11.5 14.0 11.5 14.0 14.0 14.0 14.0 19.0 19.0 24.5 26.5 27.0 26.5 27.0 27.0 32.0 32.0	PHE 280HK510 PHE 280HA510 PHE 280HA515 PHE 280HA515 PHE 280HA522 PHE 280HA533 PHE 280HA547 PHE 280HA568 PHE 280HB610 PHE 280HB615 PHE 280HB633 PHE 280HC633 PHE 280HC647 PHE 280HD647 PHE 280HD668 PHE 280HD668 PHE 280HD710 PHE 280HF715 PHE 280HF715	0.6 0.6 0.6 0.6 0.6 1.0 1.5 1.5 2.5 2.5 2.5 3.3 4.1 6.7 7.8 12.0

Lead spacing see page 77.

STANDARD UNITS

Cap μF			mensions mm			require- in mm	Order Number	Weight approx.				
	L	w	н	а	D	E		g				
400 VDC	400 VDC 200 VAC (U _R)											
0.001	10.5	4.0	6.8	7.6	4.5	11.5	PHE 280KK410	0.5				
0.0015	10.5	4.0	6.8	7.6	4.5	11.5	PHE 280KK515	0.5				
0.0022	10.5	4.0	6.8	7.6	4.5	11.5	PHE 280KK422	0.5				
0.0033	10.5	4.0	6.8	7.6	4.5	11.5	PHE 280KK433	0.5				
0.010	13.0	3.9	7.5	10.2	4.4	14.0	PHE 280KA510	0.6				
0.015	13.0	5.1	10.5	10.2	5.6	14.0	PHE 280KA515	1.0				
0.022	13.0	5.1	10.5	10.2	5.6	14.0	PHE 280KA522	1.0				
0.033	13.0	5.1	10.5	10.2	5.6	14.0	PHE 280KA533	1.0				
0.047	18.0	5.5	10.5	15.2	6.5	14.0	PHE 280KB547	1.5				
0.068	18.0	5.5	10.5	15.2	6.0	19.0	PHE 280KB568	1.5				
0.10	18.0	7.5	13.5	15.2	8.0	19.0	PHE 280KB610	2.5				
0.15	18.0	9.0	14.5	15.2	9.5	19.0	PHE 280KB615	3.2				
0.22	26.0	7.2	15.5	22.5	7.7	27.0	PHE 280KD622	4.1				
0.33	26.0	8.0	16.5	22.5	8.5	27.0	PHE 280KD633	4.2				
0.47	26.0	10.0	19.0	22.5	10.5	27.0	PHE 280KD647	6.7				
0.68	31.0	10.5	19.0	27.5	11.0	31.0	PHE 280KF668	7.8				

SPECIAL TECHNICAL FEATURES

Dissipation factor $\tan \delta \leq 1.0^{\circ}/_{\circ}$ at 1 kHz

Insulation resistance

Between terminals > 30 000 M Ω for C \leq 0.33 μ F

> 10 000 Ω F (s) for C > 0.33 μ F

Terminals-case $> 30 000 M\Omega$

Measured at +20°C after 1 minute with 100 VDC

Humidity test After a 56 days test at $+40^{\circ}$ C and 90 to 95° /₀ R.H. the fol-

lowing requirements are met:

Change of capacitance less than 5%

Absolute change of tan 8 less than 0.3% at 1 kHz

Insulation resistance higher than 50% of limits specified above.

Voltage derating DC and AC voltage derating with 1% of the rated voltage per

°C for temperatures above +85°C.

PHE 280

Pulse operation

Rated voltage	Max. du/dt in $V/\mu s$ for lead spacing in mm								
VDC	7.6—10.2	15.2	20.3	22.5	27.5				
100	10	7	5	4	3				
250	20	13	10	9	7				
400	30	20	15	13	11				

For AC voltages over 200 VAC and for pulse operation with a pulse gradient steeper than the figures above use our MP capacitors PME 261—263.

Marking

Capacitors are marked with code No., rated capacitance, rated voltage, climatic category according to IEC, manufacturing date, Rifa symbol.

Lead spacing

On printed circuits boards with 1.3 mm holes PHE 280 capacitors with 7.6, 10.2 and 15.2 mm lead spacing can be used alternatively to capacitors with 7.5 respectively 10.0 and 15.0 mm terminal lead spacing.

METALLIZED POLYCARBONATE CAPACITORS

PHE 307

for high quality requirements

PHE 307 has a metallized polycarbonate winding and is vacuum encapsulated in a self-extinguishing epoxy resin. The embedded metal label provides an excellent humidity protection. The terminal leads are of tinned copper clad steel wires.

Capacitance stability, low dissipation factor and high insulation resistance characterize these capacitors. They are therefore specially suited for semi-stable medium frequency filters and for timing.

Basic specification DIN 44 116, DIN 40 040 FMD

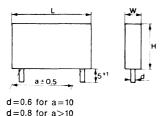
Climatic category 55/100/56

Temperature range

Rated -55° C to $+85^{\circ}$ C Category -55° C to $+100^{\circ}$ C

Voltage

Rated VDC (U_R) 100, 160, 400 VDC

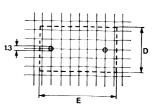

 $\begin{array}{ll} \text{Category} & \text{0.7} \times \text{U}_{\text{R}} \\ \text{Test} & \text{1.6} \times \text{U}_{\text{R}} \end{array}$

Capacitance tolerance Standard $\pm\,10^{\circ}/_{\circ}$ for C $\geq\,0.1~\mu{\rm F}$

 $\pm 20^{\circ}$ / $_{\circ}$ for C < 0.1 μ F

General technical data See "Introduction" metallized film capacitors.

Standard version



from standard (code R-)

Special version with

lead length differing

Space required on mass soldered P.C. board

Dimensions in mm

Ordering

Standard State the order No. in the list of standard units.

Special Add the special version code to the standard unit order No.

Example: PHE 307DA568J for $C_R \pm 5^{\circ}/_{\circ}$

R±1 max.30⁻⁰

PHE 307DA568JR30 for $C_R \pm 5\%$ and leads 30⁻⁰.

STANDARD UNITS

Cap.			mensions mm			quirements mm	Order Number	Weight
μ F	L	w		a	D	E		g
100 V	DC/63 V	AC			-			
0.068	13.0	3.9	7.5	10.0	4.4	14.0	PHE 307DA568	0.6
0.10	13.0 13.0	3.9 5.1	7.5 10.5	10.0 10.0	4.4 5.6	14.0 14.0	PHE 307DA610 PHE 307DA615	0.6
0.22	13.0	5.1	10.5	10.0	5.6	14.0	PHE 307DA622	0.9
0.33	18.0	5.5	10.5	15.0	6.0	19.0	PHE 307DB633	1.3
0.47	18.0	5.5	10.5	15.0	6.0	19.0	PHE 307DB647	1.3
0.68	18.0 18.0	7.0 7.5	12.0 13.5	15.0 15.0	7.5 8.0	19.0 19.0	PHE 307DB668 PHE 307DB710	2.3
1.5	26.0	7.0	13.0	22.5	7.5	27.0	PHE 307DD715	2.9
2.2	26.0	8.0	16.5	22.5	8.5	27.0	PHE 307DD722	3.8
3.3	26.0	10.0	19.0	22.5	10.5	27.0	PHE 307DD733	6.2
4.7	31.0	10.5	19.0	27.5	11.0	32.0	PHE 307DF747	7.1
5.6 6.8	31.0 31.0	12.5 12.5	20.5 20.5	27.5 27.5	13.0 13.0	32.0 32.0	PHE 307DF756 PHE 307DF768	9.5
	DC/100 V		20.5	21.5	10.0	52.0	1112 307 21 700	- 3.3
0.022	13.0	3.9	7.5	10.0	4.4	14.0	PHE 307FA522	1 00
0.022	13.0	3.9	7.5 7.5	10.0	4.4	14.0	PHE 307FA522	0.6
0.047	13.0	4.8	10.5	10.0	5.3	14.0	PHE 307FA547	0.8
0.068	13.0	5.1	10.5	10.0	5.6	14.0	PHE 307FA568	0.9
0.10	18.0	5.5	10.5	15.0	6.0	19.0	PHE 307FB610	1.3
0.15	18.0 18.0	5.5 7.0	10.5 12.0	15.0 15.0	6.0	19.0	PHE 307FB615	1.3
0.22	18.0	7.0	12.0	15.0	7.5 7.5	19.0 19.0	PHE 307FB622 PHE 307FB633	2.3
0.47	25.5	6.5	13.5	22.5	7.0	26.5	PHE 307FD647	3.0
0.68	26.0	7.2	15.5	22.5	7.7	27.0	PHE 307FD668	3.5
1.0	26.0	8.0	16.5	22.5	8.5	27.0	PHE 307FD710	3.8
1.5	30.0	10.5	19.0	27.5	11.0	32.0	PHE 307FF715	7.1
	30.0	12.5	20.5	27.5	13.0	32.0	PHE 307FF722	9.5
	OC/200 V							
0.010	13.0	3.9	7.5	10.0	4.4	14.0	PHE 307KA510	0.6
0.015 0.022	13.0 13.0	3.9 5.1	7.5 10.5	10.0 10.0	4.4 5.6	14.0	PHE 307KA515	0.6
0.022	13.0	5.1	10.5	10.0	5.6	14.0 14.0	PHE 307KA522 PHE 307KA533	0.9
0.047	18.0	5.5	10.5	15.0	6.0	19.0	PHE 307KB547	1.3
0.068	18.0	5.5	10.5	15.0	6.0	19.0	PHE 307KB568	1.3
0.10	18.0	7.5	13.5	15.0	8.0	19.0	PHE 307KB610	2.3
0.15 0.22	18.0 26.0	7.5 7.2	13.5 15.5	15.0 22.5	8.0	19.0	PHE 307KB615	2.3
0.22	26.0 26.0	7.2 8.0	15.5 16.5	22.5 22.5	7.7 8.5	27.0 27.0	PHE 307KD622 PHE 307KD633	3.5
0.47	26.0	10.0	19.0	22.5	10.5	27.0	PHE 307KD633	6.2
0.68	30.0	10.5	19.0	27.5	11.0	32.0	PHE 307KF668	7.1
1.0	30.0	12.5	20.5	27.5	13.0	32.0	PHE 307KF710	9.5

RIFA

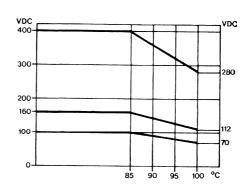
SPECIAL TECHNICAL FEATURES

Dissipation factor

 $\tan\delta \le 0.3^{\circ}/_{\circ}$ at 1 kHz for C $\le 10~\mu F$ $\tan\delta \le 1.0^{\circ}/_{\circ}$ at 10 kHz for C $\le 1~\mu F$

Insulation resistance

Between terminals


 \geq 30 000 M Ω for C \leq 0.33 μ F \geq 10 000 Ω F (s) for C > 0.33 μ F

Terminals-case

 \geq 30 000 M Ω

Measured at +20°C after 1 minute with 100 VDC.

Voltage derating

Humidity test

After a 56 days test at $+40^{\circ}\text{C}$ and $90\text{---}95^{\circ}\text{/}_{\circ}$ R.H. the following

requirements are met:

Change of capacitance less than 2%

Absolute change of tanδ less than 0.5% at 1 kHz

Insulation resistance higher than 50% of limits specified above.

Marking

The capacitors are marked with code No., rated capacitance,

tolerance, rated voltage, climatic category, manufacturing date,

Rifa symbol.

METALLIZED POLYCARBONATE CAPACITORS

Notes

for high quality requirements

PHE 353 is a metallized polyester capacitor encapsulated in a selfextinguishing epoxy-filled polypropylene case. Tinned copper clad steel wires. The capacitor is especially designed for decoupling of TTL circuits.

Climatic category 55/100/56

Temperature range

Rated $-55^{\circ}\text{C to } +85^{\circ}\text{C}$ Category $-55^{\circ}\text{C to } +100^{\circ}\text{C}$

Voltage

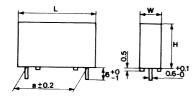
Rated VDC (U_R) 100, 250, 400 VDC

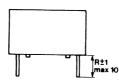
Category VDC (U_c) $0.7 \times U_R$

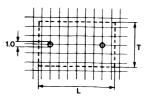
Rated VAC 63, 160, 200 VAC up to $\pm 85^{\circ}$ C and 500 Hz

Test $1.6 \times U_R$

Capacitance tolerance Standard $\pm 20^{\circ}/_{\circ}$ (code M)


Special $\pm 10^{\circ}/_{\circ}$ (code K)


General technical data See "Introduction" metallized film capacitors


Standard version

Special version with long leads

Space required on mass soldered PC boards

Dimensions in mm

Ordering

Standard version State the order No. in the list of standard units.

Special version Add the special version code to the standard unit order No.

Example: PHE 353DK522K for $C_R \pm 10^{\circ}/_{\circ}$

PHE 353DK522KR10 for C_R ± 10% and lead length

 $10 + \frac{1}{-0}$ mm

STANDARD UNITS

Cap.			nensions mm		Order Number	Weight approx.
	L	w	Н	a*		g
100 VDC 63 VA	C (U _R)					
0.022 μF 0.033 μF 0.047 μF 0.068 μF 0.1 μF	10.5 10.5 10.5 10.5 10.5	4.0 4.0 4.0 4.0 4.0	8.0 8.0 8.0 10.0	7.6 7.6 7.6 7.6 7.6 7.6	PHE 353DK522 PHE 353DK533 PHE 353DK547 PHE 353DK568 PHE 353DK610	0.5 0.5 0.5 0.7 0.7
250 VDC 160 V						
0.010 μF 0.015 μF 0.022 μF 0.033 μF	10.5 10.5 10.5 10.5	4.0 4.0 4.0 4.0	8.0 8.0 10.0 10.0	7.6 7.6 7.6 7.6	PHE 353HK510 PHE 353HK515 PHE 353HK522 PHE 353HK533	0.5 0.5 0.7 0.7
400 VDC 200 V	AC (U _R)					
1000 pF 1500 pF 2200 pF 3300 pF 4700 pF 6800 pF	10.5 10.5 10.5 10.5 10.5 10.5	4.0 4.0 4.0 4.0 4.0 4.0	8.0 8.0 8.0 8.0 8.0	7.6 7.6 7.6 7.6 7.6 7.6 7.6	PHE 353KK410 PHE 353KK415 PHE 353KK422 PHE 353KK433 PHE 353KK447 PHE 353KK468	0.5 0.5 0.5 0.5 0.5 0.5

^{*} See lead spacing below.

SPECIAL TECHNICAL FEATURES

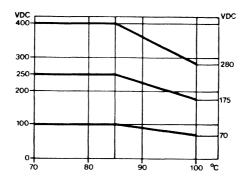
Dissipation factor $\tan \delta \leq 3^{\circ}/_{\circ}$ at 100 kHz

 $tan\delta \leq 1.5^{0}/_{0}$ at 10 kHz $tan\delta \leq 0.8^{0}/_{0}$ at 1 kHz

Insulation resistance

 $\begin{array}{ll} \mbox{Between terminals} & > 30 \ 000 \ \mbox{M}\Omega \\ \mbox{Terminals-case} & > 30 \ 000 \ \mbox{M}\Omega \end{array}$

Measured at +20°C after 1 minute with 100 VDC


Lead spacing PHE 353 can without restriction be used in applications

specifying 7.5 mm lead spacing

PHE 353

Voltage derating

Humidity test

After a 56 days test at $+40^{\circ}$ C and 90—95% R.H. the following requirements are met:

Change of capacitance less than 30/0

Absolute change of $tan\delta$ less than $0.3^{\text{o}}/_{\text{o}}$ at 1 kHz

Insulation resistance higher than $50^{\circ}/_{\circ}$ of limits specified above

Pulse operation

Rated voltage VDC	Max du/dt in V/ μ s	
100	12	
250	21	
400	25	

Marking

Capacitors are marked with code No., rated capacitance, capacitance tolerance, rated voltage, manufacturing date and RIFA symbol.

Notes

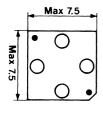
modular precision type

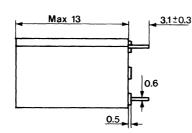
PHE 425 is a precision capacitor type with metallized polypropylene dielectric.

PHE 425 is characterized by its outstanding capacitance stability and low losses. The extremely small dimensions are achieved by utilizing ultra-thin metallised polypropylene film. This construction maximizes the ratio capacitance/volume for high stability, low loss capacitors.

Selfextinguishing encapsulation in epoxy-filled polypropylene case. Modular dimensions makes high package density on PC boards possible. Tinned copper clad steel wires. The moulded case incorporates stand-offs facilitating flow soldering on PC-board with through-plated holes.

Configuration and dimensions are identical with those of PFE 225 modular polystyrene capacitor range.

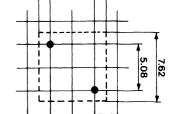

Climatic category 55/085/56


Temperature range -55° C to $+85^{\circ}$ C

Capacitance tolerance $\pm 2^{\circ}/_{\circ}$ (code G), $\pm 5^{\circ}/_{\circ}$ (code J)

General technical data See "Introduction" metallized film capacitors

Special version with lead length 8.0 $\frac{+2}{-0}$ mm (code R8)

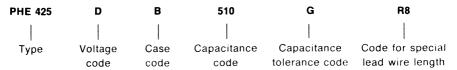


7.62 5.08

Dimensions in mm

Space requirements on P.C. board with > 1.0 mm hole diameter

STANDARD UNITS


Capacitance range #F	Rat volt VDC	age VAC	Capacitance tolerance ± °/0	Order Number	Weight app. g
0.01 0.012 0.015 0.018 0.022 0.027 0.033	100	63	5	PHE 425DB510J PHE 425DB512J PHE 425DB515J PHE 425DB518J PHE 425DB522J PHE 425DB527J PHE 425DB533J	1
0.039 0.047 0.056 0.068 0.082 0.10 0.12	63	40	5	PHE 425CB539J PHE 425CB547J PHE 425CB556J PHE 425CB568J PHE 425CB582J PHE 425CB610J PHE 425CB612J	1

SPECIAL UNITS

Capacitance range _# F	range voltage		Capacitance tolerance ± °/°	Order Number	Weight app. g
0.01—0.035	100	63	2 5	PHE 425DBG PHE 425DBJ	1
> 0.035—0.14	63	40	2 5	PHE 425CBG PHE 425CBJ	1

On special order any capacitance value within the range stated in the table is available.

When ordering please state the complete type designation. It should be written as in the following example:

In the type designation the first digit of the capacitance code designates the number of integral digits of the capacitance value in pF. The second and third digits are the first two digits of the capacitance value. Examples: 533 is the code for 33 000 pF and 612 for 120 000 pF.

PHE 425

SPECIAL TECHNICAL FEATURES

Dissipation factor

 $tan\delta \leq 3 \times 10^{-4}$ at 1 kHz and 20°C

 $tan\delta \leq 20 \times 10^{-4}$ at 100 kHz and $20^{\circ}C$ for $C \leq 35\,000$ pF $tan\delta \leq 50 \times 10^{-4}$ at 100 kHz and $20^{\circ}C$ for $C > 35\,000$ pF

Insulation resistance

 \geq 200 000 M Ω

Self-inductance

 \leq 40 nH at 2 mm from capacitor body

Temperature coefficient $-(250 \pm 50) \times 10^{-6}$ $^{\circ}$ C

Test voltage

1.6×U_R

Dielectric absorption

 $\leq 0.01\%$ according to MIL-C-19978B paragraph 4.6.15.

Capacitors shall be charged for one hour at rated DC voltage U_{R} , then discharged through 5Ω for 10 seconds. The discharge resistor shall then be disconnected and the recovery voltage Ur shall be measured 15 minutes after disconnection. Dielectric

absorption is then defined by

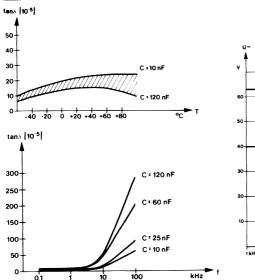
U, UR

Pulse operation

10 000 pF < C \leq 20 000 pF: Max du/dt = 40 V/ μ s 20 000 pF < C \leq 60 000 pF: Max du/dt = 30 V/ μ s 60 000 pF < C \leq 140 000 pF: Max du/dt = 10 V/ μ s

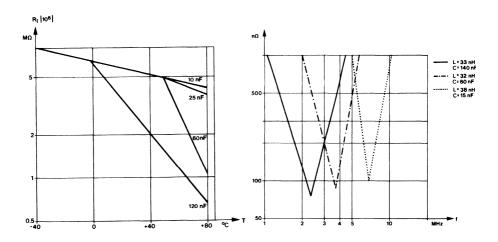
Harmonic ratio

attenuation


 \geq 130 dB

Marking

The capacitor is marked with capacitance, capacitance tolerance, rated voltage, manufacturing date, code No. and


RIFA symbol.

Typical values of $tan\delta$ v temperature and requency.

Max. AC voltage v frequency at $+25^{\circ}$ C.

Insulation resistance v temperature. Typical values.

Resonance diagram. Measurements at 2 mm from the capacitor body. Typical values.

PHZ 2039

for high quality requirements

PHZ 2039 has a metallized polycarbonate winding and is vacuum encapsulated in a self-extinguishing epoxy resin. The embedded metal label provides an excellent humidity protection. The terminal leads are of tinned copper clad wires.

Capacitance stability, low dissipation factor and high insulation resistance characterize these capacitors.

Climatic category

40/085/56

Temperature range

—40°C to +85°C

Voltage

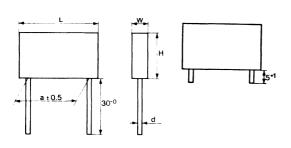
Test

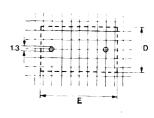
Rated (U_R)

63 VDC 95 VDC

Capacitance tolerance

 $\pm 10^{\circ}/_{\circ}$


General technical data


See "Introduction" metallized film capacitors

Standard version

Special version with short leads (code R)

Space required on mass soldered P.C. board

Dimensions in mm

Add the special version code to the standard unit order No. Example: PHZ 2039R5.

STANDARD UNIT

Cap.		Max dim in (3		quirements mm	Order Number	Weight	
μF	L	W	Н	а	D	E		g	
63 VDC/4	0 VAC								
10	30.0	10.5	19.0	27.5	11.0	31.0	PHZ 2039	7.0	

SPECIAL TECHNICAL FEATURES

Dissipation factor $\tan \delta \le 0.5^{\circ}/_{\circ}$ at 1 kHz

Insulation resistance

 $\begin{array}{ll} \text{Between terminals} & \geq 1000 \text{ M}\Omega \\ \text{Terminals-case} & \geq 30 \ 000 \ \text{M}\Omega \end{array}$

Measured at +20°C after 1 minute

Humidity test After a 56 days test at $+40^{\circ}$ C and $90-95^{\circ}$ /o R.H. the following

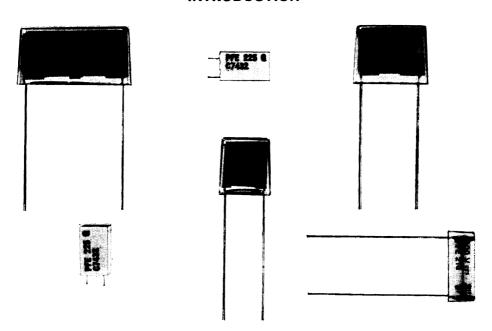
requirements are met:

Change of capacitance less than 2%

Absolute change of tan 8 less than $0.5^{\circ}/_{0}$ at 1 kHz

Insulation resistance higher than 50% of limits specified

above.


Marking The capacitors are marked with code No., rated capacitance,

rated voltage, temperature ,manufacturing date and RIFA

symbol.

INTRODUCTION

Polystyrene film is a plastic material with excellent electrical characteristics. To maintain the good properties in capacitors, careful and well-proven design and manufacture of the capacitors are necessary.

Rifa has manufactured polystyrene capacitors since the material became available in the mid 40's. Consequently the design and production of the capacitors presented in the type specifications are based on many years experience and continuous development work.

The capacitors offer a high long-term capacitance stability. The low and reproducible temperature coefficient makes them ideally suited for use in equipment that has to meet exacting requirements. Also a very low dissipation factor and very high insulation resistance are among the features of these capacitors.

Examples of application ranges for polystyrene capacitors are filters, timing and high-frequency coupling-decoupling.

SPECIFICATION

Polystyrene capacitors are covered in IEC publication 275. This publication is the basic specification for the types presented in this catalogue.

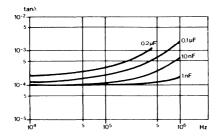
CAPACITANCE

Capacitance is measured at $+20^{\circ}\text{C}$ and at 1 MHz for rated capacitance C $_{R} \leq$ 1000 pF and at 1 kHz for C $_{R} >$ 1000 pF.

RATED VOLTAGE

Rated DC (U_R) and AC voltages are stated in the type specifications and denote the highest DC or RMS AC voltages to which the capacitor may be continuously subjected. When an AC voltage is superimposed on a DC voltage, the resultant peak voltage must not exceed the rated DC voltage U_R .

RATED TEMPERATURE RANGE


The rated temperature range is stated in the type specifications. It denotes the temperature range within which the capacitor may be connected continuously to rated DC voltage. When the capacitors are subjected to self-heating due to AC load the upper rated temperature denotes the highest surface temperature allowed.

TEST VOLTAGE

2×rated DC voltage for 2 s.

DISSIPATION FACTOR

Max dissipation factor $\tan\delta$ at specified frequencies and ± 20 C is stated in the type specifications. Typical curves for $\tan\delta$ v frequency are given below. The rise in $\tan\delta$ at high frequencies is mainly dependent on losses in leads and electrodes. The graph shows $\tan\delta$ for capacitors with 2×5 mm lead length outside the capacitor body.

TEMPERATURE CHARACTERISTICS

TC for the capacitance within the rated temperature range is —(110 \pm 30) \times 10⁻⁶/ C for U_R \geq 100 VDC and —(160 \pm 40) \times 10⁻⁶/ C for U_R < 100 VDC.

INSULATION RESISTANCE

Greater than 500 000 M Ω measured with 100 VDC (10 VDC for U_R < 100 VDC) at \pm 20 C after 1 minute of electrification.

DIELECTRIC ABSORPTION

Less than 0.01%. The capacitor shall be charged for one hour at rated DC voltage U_R , then discharged through a 5Ω resistor for 10 seconds. The discharge resistor shall then be disconnected and the recovery voltage U_r shall be measured 15 minutes after

disconnection. Dielectric absorption is defined by $-\frac{U_r}{U_p}$

VIBRATION TEST

When mounted on a printed circuit board the capacitors will withstand vibration 10—500 Hz, 0.75 mm displacement or 98 m/s² according to IEC 68-2-6, test Fc.

SOLDERABILITY

Wetting time \leq 1 s when subject to test according to IEC publication 68-2-20 (DIN 40 046, Blatt 18, Prüfung Tc).

MOUNTING

For mounting on a printed circuit board, any method of soldering may be employed without the need for a heat sink. For self-supporting assembly of PFE 210 and PFE 216, bending of the terminals does not damage the capacitor.

MARKING

The capacitor is marked with rated capacitance and capacitance tolerance in code, rated DC voltage, type number, period of manufacture and the name of the manufacturer.

Capacitance in IEC code followed by the tolerance code letter is marked according to the following examples:

100 pF $\pm 5\%$ is marked 100 pJ 1100 pF $\pm 2\%$ is marked 1n1G 12300 pF $\pm 1\%$ is marked 12n3F p=pico and n=nano replace the decimal point.

The code letters for the tolerances which can be supplied are stated in the type specification.

ORDERING

Available capacitance range is stated in the type specifications. Any capacitance within these ranges may be ordered. However, capacitance values selected from the IEC series of values stated below would facilitate manufacture and shipping.

The bold type figures state the IEC E 48 series which is preferred.

100	127	162	205	261	332	422	536	681	866
101	129	164	208	264	336	427	542	690	876
102	130	165	210	267	340	432	549	698	887
104	132	167	213	271	344	437	556	706	898
105	133	169	215	274	348	442	562	715	909
106	135	172	218	277	352	448	569	723	920
107	137	174	221	280	357	453	576	732	931
109	138	176	223	284	361	459	583	741	942
110	140	178	226	287	365	464	590	750	953
111	142	180	229	291	370	470	597	759	965
113	143	182	232	294	374	475	604	768	976
114	145	184	234	298	379	481	612	777	988
115	147	187	237	301	383	487	619	787	
117	149	189	240	305	388	493	626	796	
118	150	191	243	309	392	499	634	806	
120	152	193	246	312	397	505	642	816	
121	154	196	249	316	402	511	649	825	
123	156	198	252	320	407	517	657	835	
124	158	200	255	324	412	523	665	845	
126	160	203	258	328	417	530	673	856	

Notes
•••••

POLYSTYRENE CAPACITORS

PFE 210

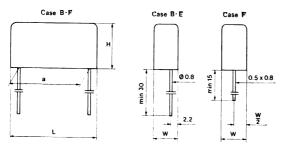
High stability type

The PFE 210 polystyrene capacitor has windings with tin foil electrodes. The extended foil design has the terminal leads soldered directly to the tin foils. The epoxy encapsulation with an embedded metal shield provides excellent humidity protection.

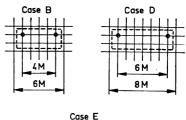
The modular dimensions require a minimum of space on the printed circuit board.

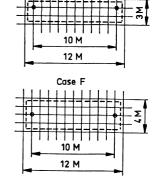
Basic specification IEC publication 275, category 40/085/56

Temperature range —40°C to +85°C


Capacitance tolerance $\pm 0.5\%$ (code D), $\pm 1\%$ (code F), $\pm 2\%$ (code G).

 $\pm 5^{\circ}$ /o (code J). However, not closer than ± 2 pF (code A).


General technical data See "Introduction Polystyrene Capacitors"


Dimensions

Case		Weight approx.			
size	L max.	W max.	H max.	а	g
В	14.1	7	15.5	10.2	2.5
D	19.3	7	15.5	15.2	3.5
E	29.3	7	15.5	25.4	5.0
F	29.3	9.5	20.0	25.4	9.0

Space requirements on printed circuit board

1M=0.1"=2.54 mm

Printed circuit board hole diameter 1.3 mm

RANGE/CASE SIZES

INITIAL ONCE CILLO			
Capacitance range pF	Case size code	Capacitance tolerance ± %	Order No.
100 VDC 63 VAC			
3,000—10,000	В	0.5 1.0 2.0	PFE 210DBD PFE 210DBF PFE 210DBG
> 10,000—40,000	D	0.5 1.0 2.0	PFE 210DDD PFE 210DDF PFE 210DDG
> 40,000—80,000	E	0.5 1.0 2.0	PFE 210DED PFE 210DEF PFE 210DEG
> 80,000—170,000	F	0.5 1.0 2.0	PFE 210DFD PFE 210DFF PFE 210DFG
200 VDC 125 VAC			
50—100 400—3,000 200—3,000 100—3,000	В	2 pF 0.5 % 1.0 2.0	PFE 210GBA PFE 210GBD PFE 210GBF PFE 210GBG
> 3,000—10,000	D	0.5 1.0 2.0	PFE 210GDD PFE 210GDF PFE 210GDG
> 10,000—20,000	E	0.5 1.0 2.0	PFE 210GED PFE 210GEF PFE 210GEG
> 20,000—40,000	F	0.5 1.0	PFE 210GFD

ORDER INFORMATION

When ordering please state the complete order No. It should be written as in the the following example:

2.0

In the type designation the first digit of the capacitance code designates the number of integral digits of the capacitance value in pF. The second and third (and fourth if necessary) digits are the first two (three) digits of the capacitance value. Examples: 462 is the code for 6200 pF and 4625 for 6250 pF.

PFE 210GF....G

SPECIAL TECHNICAL FEATURES

 $tan\delta \le 10^{-3}$ for C ≤ 1000 pF at 1 MHz Dissipation factor

 $tan\delta \le 2 \times 10^{-4}$ for C > 1000 pF at 1 kHz

Self-inductance The self-inductance is primarily dependent upon lead length.

With 10 mm of free lead length the value is approximately

25 nH.

Mechanical solidity The capacitor is constructed for printed circuit board mounting.

> It meets vibration tests according to IEC publication 68, test F. severity IV (10-500 Hz, 10 g) or MIL-STD-202, method 204. test condition B and shock test according to MIL-STD-202.

method 205, test condition C.

Terminals Heavily tinned copper leads with 0.8 mm diameter. For case

size F tinned brass wires 0.5 × 0.8 mm.

Humidity resistance After a test to IEC 68-2 severity 56 (56 days at +40°C and

90-95% R.H.) the I.R. is still above specified limits and the

capacitance change does not exceed 0.15%.

Long term instability The following requirements of max capacitance instability are

met by PFE 210 when operated at rated voltage:

1. $\pm (0.1\% + 0.3 \text{ pF})$ after at least three years at max +50%C

and at an average R.H. of max 70%.

2. $\pm 0.5\%$ for C > 500 pF and $\pm 0.75\%$ or ± 0.5 pF (whichever

is the greatest) for C \leq 500 pF after 1000 h at $+85^{\circ}$ C.

The failure rate of PFE 210 is so low that reliability data referring to normal operation cannot be achieved in laboratory tests. However, operational statistics for a total of 12×10°

unit-hours have revealed a mean failure rate of less than

10⁻¹⁰/h.

Reliability

Notes
······

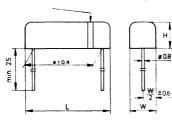
POLYSTYRENE CAPACITORS

PFE 216

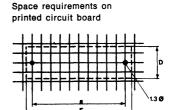
Low profile precision type

The PFE 216 polystyrene capacitor has a winding with tin foil electrodes. The extended foil design has the terminal leads soldered directly to the tin foils. Epoxy encapsulation.

Basic specification IEC publication 275, category 40/085/21


Temperature range —40°C to +85°C

General technical data See "Introduction Polystyrene capacitors".


Capacitance tolerance

erance	Cap. range		
code	pF		
F	≥100		
G	≥100		
В	47—200		
Α	47—100		
	F G B		

Outer foil, marked in the winding.

Dimensions in mm

Case size	Dimensions in mm			Space requirements in mm			Weight	
code	L	w	H _{max.}	D	E	a	g	
В	14.5	6	7	6.8	15	10.2	1.3	
С	19	7	8	7.8	19.5	15.2	2.0	
D	29.5	8.5	10	9.3	30	25.4	2.3	
E	29.5	10	12	10.8	30	25.4	5.5	
F	29.5	13.5	14.5	14.3	30	25.4	11	

RANGE/CASE SIZE

Capacitance	Case	Capacitance	Order No.
range	size	tolerance	
pF	code	± º/e	

100 VDC 63 VAC

> 1,500—8,000	В	1.0 2.0	PFE 216DBF PFE 216DBG
> 8,000—33,000	С	1.0 2.0	PFE 216DCF PFE 216DCG
> 33,000—100,000	D	1.0 2.0	PFE 216DDF PFE 216DDG
> 100,000—150,000	E	1.0 2.0	PFE 216DEF PFE 216DEG
> 150,000—250,000	F	1.0 2.0	PFE 216DFF PFE 216DFG

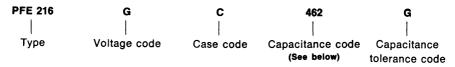
200 VDC 125 VAC

> 1,000—1,500	В	1.0 2.0	PFE 216GBF PFE 216GBG
> 1,500—8.000	С	1.0 2.0	PFE 216GCF PFE 216GCG
> 8,000—50,000	D	1.0 2.0	PFE 216GDF PFE 216GDG
> 50,000—70,000	E	1.0 2.0	PFE 216GEF PFE 216GEG
> 70,000—100,000	F	1.0 2.0	PFE 216GFF PFE 216GFG

Continued overleaf

PFE 216

RANGE/CASE SIZE


Capacitance	Case	Capacitance	Order No.
range	size	tolerance	
pF	code	± % (pF)	

500 VDC 250 VAC

47—200 47—100 100—1,000 100—1,000	В	2 pF 5 pF 1.0% 2.0	PFE 216LBB PFE 216LBA PFE 216LBF PFE 216LBG
> 1,000—5,000	С	1.0 2.0	PFE 216LCF PFE 216LCG
> 5,000—17,000	D	1.0 2.0	PFE 216LDF PFE 216LDG
> 17,000—26,000	E	1.0 2.0	PFE 216LEF PFE 216LEG
> 26,000—55,000	F	1.0 2.0	PFE 216LFF PFE 216LFG

ORDER INFORMATION

When ordering please state the complete code No. It should be written as in the following example:

In the type designation the first digit of the capacitance code designates the number of integral digits of the capacitance value in pF. The second and third (and fourth if necessary) digits are the first two (three) digits of the capacitance value. Examples: 462 is the code for 6200 pF and 4625 for 6250 pF.

SPECIAL TECHNICAL FEATURES

Dissipation factor $\tan \delta < 2 \times 10^{-4}$ for C < 0.1 μ F at 1 kHz

 $\tan \delta < 3 \times 10^{-4}$ for C > 0.1 μ F at 1 kHz.

Self-inductance The self-inductance is primarily dependent upon lead length.

With 5 mm of free lead length the value is approximately

10 nH.

Mechanical solidity The capacitor is constructed for printed circuit board mounting.

> It meets vibration tests according to IEC publication 68, test F, severity IV (10-500 Hz, 10 g)or MIL-STD-202, method 204, test condition B and shock test according to MIL-STD-202, method

205, test condition C.

Terminals For case sizes B-E heavily tinned copper leads.

For case size F heavily tinned copper clad steel wires.

Humidity resistance After a test to IEC 68, severity 21 (21 days at +40°C and

90-95% R.H.) the capacitance change will be less than

±0.15% and I.R. will still meet values specified above.

The following requirements of max capacitance instability are Long term instability

met by PFE 216 when operated at rated voltage:

1. $\pm (0.2^{\circ}/_{\circ} + 0.4 \text{ pF})$ after at least three years at max $+50^{\circ}$ C

and at an average R.H. of max 70%.

2. $\pm 0.5\%$ for C > 500 pF and $\pm 0.75\%$ or ± 0.5 pF (whichever

is the greatest) for $C \le 500$ pF after 1000 h at $+85^{\circ}$ C.

Reliability The failure rate of PFE 216 is so low that reliability data

referring to normal operation cannot be achieved in laboratory tests. However, operational statistics for a total of 12×10°

unit-hours have revealed a mean failure rate of less than

10⁻¹⁰/h.

PFE 225

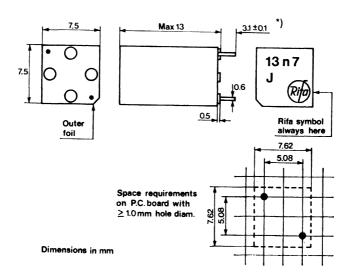
Modular precision type

The PFE 225 polystyrene capacitors are designed to be used as filter capacitors together with RM6 ferrite cores.

The capacitor has a winding with extended tin foil electrodes.

Terminal leads are connected to the electrodes in such a way that reliable contact is assured even at very low voltages.

Self-extinguishing epoxy-filled polypropylene case of modular dimensions provides high package density on printed circuit boards. The moulded case incorporates stand-offs facilitating flow soldering on P.C. boards with through-plated holes.


Basic specification IEC publication 275, category 40/085/56

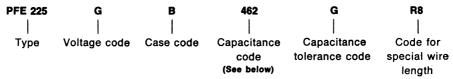
Temperature range —40°C to +85°C

Capacitance tolerance $\pm 0.5\%$ (code D), $\pm 1\%$ (code F), $\pm 2\%$ (code G), $\pm 5\%$

(code J). However, not closer than ±1.5 pF (code A).

General technical data See "Introduction Polystyrene Capacitors" page 93—96.

^{*)} PFE 225 can be supplied with 8 $^{+2}_{-0}$ mm lead length. Please add R8 to order number.



CAPACITANCE RANGE AND RATED VOLTAGE

Capacitance	Rated	Capacitance	Order No.
range	voltage	tolerance	
pF	VDC VAC	± %	
47—299	200 125	1.5 pF	PFE 225GBA
300—1,500		0.5%	PFE 225GBD
150—1,500		1.0	PFE 225GBF
75—1,500		2.0	PFE 225GBG
> 1,500—13,700	100 63	0.5 1.0 2.0	PFE 225DBD PFE 225DBF PFE 225DBG
> 13,700—18,000	63 40	0.5 1.0 2.0	PFE 225CBD PFE 225CBF PFE 225CBG

ORDER INFORMATION

When ordering please state the complete order No. It should be written as in the following example:

In the type designation the first digit of the capacitance code designates the number of integral digits of the capacitance value in pF. The second and third (and fourth if necessary) digits are the first two (three) digits of the capacitance value. Examples: 462 is the code for 6200 pF and 4625 for 6250 pF.

SPECIAL TECHNICAL FEATURES

Dissipation factor Tan $\delta \leq 10^{-3}$ at 1 MHz for C ≤ 1000 pF

Tan $\delta \le 2 \times 10^{-4}$ at 1 kHz for C > 1000 pF

Self-inductance < 12 nH

Humidity resistance After a test according to IEC 68-2-3, test Ca, severity 56, the

capacitance change is less than 0.5% + 1 pF.

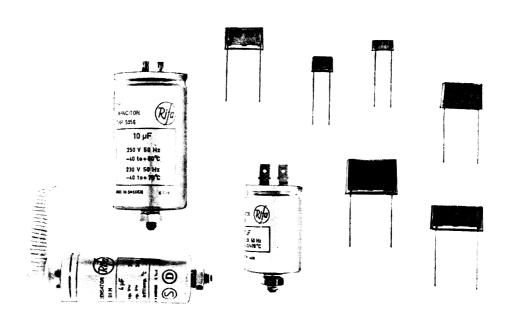
Terminals Heavily tinned copper clad steel wires with 0.6 mm diameter.

Long term instability The following requirements of max. capacitance instability are met by PFE 225 when operated at rated voltage:

1. $\pm (0.2\% + 0.2 \text{ pF})$ after at least three years at max. $+50^{\circ}\text{C}$

and at an average R.H. of max. 70%.

2. $\pm 0.5\%$ for C > 500 pF and $\pm 0.75\%$ or ± 0.5 pF (whichever is the greatest) for C \leq 500 pF after 1000 h at +85°C.



METALLIZED PAPER CAPACITORS

	Page
GENERAL TECHNICAL INFORMATION	111
SELECTION GUIDE	113
TECHNICAL NOTES DC APPLICATION	116
Miniprint types	118
Can types	122
TECHNICAL NOTES AC OPERATION	128
Motor applications	133
Lamp capacitor applications	136
Motor capacitors	138
Discharge lamp capacitors	144
Pulse operation capacitors	150

GENERAL TECHNICAL INFORMATION

Throughout this catalogue the expression "MP capacitors" is used to denote capacitors made of vacuum metallized capacitor tissue.

Metallized paper capacitors have for many years formed an important part of Rifa's extensive range of capacitors. The MP capacitors are designed for both AC and DC applications. They are, due to their good self-healing properties, especially suited for AC and other applications where voltage transients may occur. Particularly in such applications the MP capacitors have over a period of many years proven their superiority to other types of dielectric systems. Even the modern plastic dielectrics are lacking a lot of the inherent fabourable properties of metallized paper.

The manufacture of MP capacitors, as of other types, is based on comprehensive tests of materials, experimental production and life tests on finished capacitors at the Rifa laboratories.

The modern MP capacitor is the product of a highly developed vacuum technique involving the condensation of metal in an extremely thin film on capacitor tissue. This layer of metal on paper replaces the conventional metal foil. As a result of its self-healing property referred to below, this dielectric can be subjected to higher stresses than in all other dielectric system capacitors.

GENERAL TECHNICAL INFORMATION

The self-healing property of the metallized paper also makes it possible to employ a single paper dielectric. The thin dielectric and the absence of metal foil make the MP capacitor very small in size and weight. It is therefore ideal for use where space is at a premium.

CONSTRUCTION

The capacitor consists of a winding which, for a single layer capacitor, comprises two strips of metallized paper. On the metallized paper a margin is left on one side, and the strips are so arranged, that the metal coating on one strip extends to one edge of the finished winding, and the metal coating on the other strip extends to the other edge.

In capacitors intended for higher voltages one or more layers of paper or polypropylene film are inserted between the metallized papers to reinforce the dielectric.

Connections to the electrodes are made by spraying a layer of metal on the edges of the winding, to which the terminating wires can subsequently be attached by welding or soldering.

The winding is dried and impregnated under high vacuum and assembled in a protecting case. Impregnation materials used are epoxy resin, mineral wax or mineral oil.

During manufacture the capacitor is connected to a DC supply to clear the metal layer around pin-holes and other weak spots in the paper to ensure a high and stable insulation in the capacitor. The clearing voltage is so chosen that only a minimum of self-healing breakdowns occur when the capacitor is operated within specified limits.

SELF-HEALING

If conducting particles or a voltage surge punctures the dielectric, an arc occurs at the point of failure which melts the surrounding metal and isolates the area of the breakdown. Such breakdowns may occur thousands of times in an MP capacitor without appreciably affecting its life or other properties. They do, however, give rise to small electrical pulses which may result in objectionable noise in certain circuits.

If a single-layer capacitor is continuously operated at rated voltage, occasional self-healing breakdowns occur. If the applied voltage is reduced to approximately $0.75 \times \text{rated}$ voltage the self-healing breakdowns are virtually eliminated and although the self-healing function is maintained the capacitor behaves as a paper and foil capacitor. By derating the voltage in this way, metallized paper capacitors can be used in circuits where the noise from the self-healing voltage pulses cannot be tolerated. Multi-layer capacitors rated at ≥ 400 volts DC show only sporadic self-healing breakdowns at rated voltage.

Туре	Terminals	Rated VDC	Voltage VAC	Cap. range μF	Type spec.	
------	-----------	--------------	----------------	------------------	------------	--

DC APPLICATION CAPACITORS

miniprii	OT TYPES				
PME 2602 PME 2614 PME 2616 PME 2631	Radial leads	250 400 630 1000	125 220 300 500	0.047—2 0.01 —1 0.001—0.15 0.001—0.1	118 118 118 118
CAN TYPES					
PMH 510-511	 	200	75	460	122
PMH 512-513		250	125	2-40	122
PMH 520-521	Solder tags	400	200	0.5—32	122
PMH 522-523		500	220	0.5—20	122
PMH 525	Flat tabs	1000	380	0.5—12	126

AC APPLICATION CAPACITORS

MOTOR RUN CAP	ACITORS			
PMP 500—501	PVC-insulated leads, insulated cap	250 230	2—20 25	138
PMP 502—503	PVC-insulated leads, aluminium cap	250 230	2—20 25	138
PMP 504—505	Solder tags	250 230	0.5—20 25	138
PMP 508—509M	Flat tabs	250 230	2—20 25	142
DISCHARGE LAM	P CAPACITORS			
PMN 511	Solder tags alt. PVC-insulated leads	230	2—16	144
PHN 451*	Terminal block	250	2—25	148
PULSE OPERATIO	ON CAPACITORS			
PMP 508—509T PMP 518—519T	Flat tabs Flat tabs	600 600	0.5—10 0.5—10	150 152
INTERFERENCE S	SUPPRESSORS See pa	~		

^{*} Metallized Polypropylene Capacitors.

DC APPLICATION CAPACITORS GENERAL TECHNICAL INFORMATION see pages 111—112.

VOLTAGE RATINGS

The capacitors can be used with rated DC voltage over the whole temperature range. For continuous operation at max. AC ratings the upper temperature has to be limited according to information in the type specifications.

The capacitors can intermittently be used at AC and DC voltages higher than rated. The intermittent voltage depends on ambient temperature and duty cycle. Please consult Rifa.

TEST VOLTAGE

Before shipment every capacitor is tested with a proof voltage as stated in the type specifications. This proof voltage is generally 1.5×rated voltage. During this test occasional self-healing breakdowns are allowed.

Metal cased capacitors are also subject to a proof voltage test between terminals and case. (3000 VDC 3 sec.)

CAPACITANCE TOLERANCE

Unless otherwise stated in the data sheets the capacitance tolerances are as follows: $\pm 20^{\circ}/_{\circ}$ for C $< 0.01~\mu F$ $\pm 10^{\circ}/_{\circ}$ for C $> 0.01~\mu F$

(Other tolerances will be supplied on request.)

SOLDERABILITY

Wetting time \leq 1 s when tested according to IEC 68-2-20, test T, solder globule method.

BUMP TEST

IEC 68-2-29, Test Eb. The capacitors, properly fixed, will withstand at least 4000 bumps with 390 m/s² retardation.

VIBRATION TEST

10-500 Hz, 98 m/s² or 0.75 mm for 6h according to IEC 68-2-6, test Fc.

HUMIDITY RESISTANCE

After a test to IEC No. 68.2.3, test Ca, severity 56 (56 days at +40°C and 90% to 95% relative humidity) the insulation resistance is still above specified limits.

INSULATION RESISTANCE

The values given in the catalogue indicate the insulation resistance after one minute of electrification at $+20^{\circ}\text{C}$ with the following voltages: 100 VDC for capacitors rated at 100 to 500 V and 500 VDC for capacitors rated at \geq 500 V. Insulation resistance is temperature dependent and is approximately halved for each 7°C of temperature increase.

Multi-layer construction provides insulation resistance higher than that of single-layer.

Figure 1 shows typical curves for the insulation resistance v temperature.

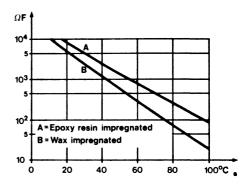


Fig. 1 Insulation resistance v temperature. Typical values.

DISSIPATION FACTOR

The dissipation factor is of interest especially when the capacitor is operated on AC. The dielectric losses cause heating of the capacitor and under unfavourable circumstances it may lead to a destructing break-down. This will not happen if the capacitor is used within specified limits.

The ability to withstand short duration thermal and voltage overload is larger for small capacitors than for large capacitance units.

Dissipation factor figures for AC capacitors are given on page 131.

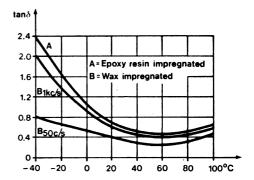


Fig. 2 Dissipation factor v temperature. Typical values.

Figures 2 and 3 show typical curves for the dissipation factor v temperature and frequency respectively.

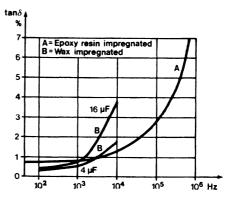


Fig. 3 Dissipation factor v frequency. Typical values.

CAPACITANCE CHANGE

The variation of capacitance v temperature and frequency is dependent on the impregnant used. The variation is shown in figures 4 and 5.

The curves A show the changes for capacitors impregnated with epoxy resin.

The curves B show the changes for wax impregnated capacitors.

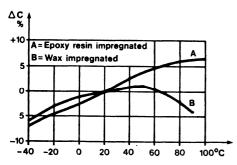


Fig. 4 Capacitance change v temperature. Typical values.

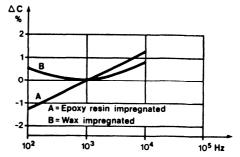


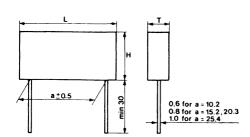
Fig. 5 Capacitance change v frequency. Typical values.

Notes

PME 260-263 miniprint®

epoxy resin encapsulated

PME 260—263 are metallized paper capacitors impregnated and encapsulated with epoxy resin. Embedded metal label offers excellent humidity protection. Terminal leads of tinned copper clad steel wires.


PME 260 are single-layer capacitors.

PME 261—263 are multi-layer capacitors.

Miniprint MP capacitors are characterized by outstanding ability to withstand high transient voltages and high current pulses (high du/dt). They can be used at DC voltages from zero to rated voltage within the whole temperature range. They are especially well suited for low frequency AC or pulse operation.

Special versions of epoxy impregnated MP capacitors especially designed for radio interference suppression and for contact protection are described in catalogue section "Interference suppressors" and section "RC networks".

	PME 2602	PME 2614, 2616, 2631
Basic specification	IEC Publ. 166 Type 2	IEC Publ. 166 Type 1
	Category 40/085/56	Category 40/100/56
Temperature range		
DC application	—40 to +85°C	—40 to +100°C
AC application	—40 to +70°C	—40 to +70°C
Rated voltage		
VDC	250 VDC	400-1000 VDC
VAC up to 400 Hz	125 VAC	220—500 VAC
Capacitance tolerance	± 10º/ ₀	$\pm 20\%$ for C $< 0.01~\mu F$
		$\pm 10^{\circ}/_{\circ}$ for C $\geq 0.01~\mu\text{F}$
General technical Information	See pages 111—116.	•

.3

Space requirements

METALLIZED PAPER CAPACITORS miniprint® PME 260—263

119

STANDARD UNITS

Cap. μF	Rated VDC	voitage VAC	Lmax	In	nsions mm ax ^H ma	x •	requir	Space ements mm E	Order Number	Weight
0.047 0.068 0.1 0.15 0.22	250	125	13.5 18.5 18.5 18.5 19.0	5.1 5.2 5.2 5.2 7.3	10.5 10.5 10.5 10.5 13.0	10.2 15.2 15.2 15.2 15.2	5.4 5.7 5.7 5.7 7.8	14.5 19.5 19.5 19.5 20.0	PME 2602/0.047 PME 2602/0.068 PME 2602/0.1 PME 2602/0.15 PME 2602/0.22	1.0 1.6 1.6 1.6 2.7
0.33 0.47 0.68 1 2	250	125	18.5 24.0 24.0 24.0 30.5	7.8 7.6 9.0 11.3 15.3	13.5 14.0 15.5 16.5 22.0	15.2 20.3 20.3 20.3 25.4	8.3 8.1 9.5 11.8 16.0	19.5 25.0 25.0 25.0 31.5	PME 2602/0.33 PME 2602/0.47 PME 2602/0.68 PME 2602/1 PME 2602/2	2.8 3.6 4.8 6.1 14.5
0.01 0.015 0.022 0.033 0.047 0.068 0.1 0.15 0.22 0.33 0.47 0.68	400	220	13.5 13.5 13.5 18.5 18.5 19.0 19.0 24.0 24.0 24.0 30.5 30.5 30.5	3.9 5.1 5.2 5.2 7.3 7.6 7.6 11.3 10.2 15.3 15.3	7.5 10.5 10.5 10.5 10.5 13.0 14.0 14.0 16.5 15.5 22.0 22.0	10.2 10.2 10.2 15.2 15.2 15.2 20.3 20.3 20.3 25.4 25.4 25.4	4.2 5.4 5.4 5.7 5.7 7.8 7.8 8.1 8.1 11.8 10.9 16.0 16.0	14.5 14.5 14.5 19.5 19.5 20.0 25.0 25.0 25.0 31.5 31.5	PME 2614/0.01 PME 2614/0.015 PME 2614/0.022 PME 2614/0.033 PME 2614/0.047 PME 2614/0.068 PME 2614/0.15 PME 2614/0.22 PME 2614/0.33 PME 2614/0.47 PME 2614/0.68 PME 2614/1	0.7 1.0 1.0 1.6 1.6 2.7 2.7 3.6 3.6 6.1 7.3 14.5
0.001 0.0015 0.0022 0.0033 0.0047 0.0068 0.01 0.015 0.022 0.033 0.047 0.068 0.1	630	300	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	3.9 3.9 3.9 3.9 3.9 5.1 5.1 5.2 7.3 7.6 9.0	7.5 7.5 7.5 7.5 7.5 10.5 10.5 10.5 10.5 11.0 13.0 14.0 15.5	10.2 10.2 10.2 10.2 10.2 10.2 10.2 15.2 15.2 15.2 15.2 20.3 20.3	4.2 4.2 4.2 4.2 4.2 5.4 5.7 5.7 7.8 7.8 7.8 9.5	14.5 14.5 14.5 14.5 14.5 14.5 19.5 19.5 19.5 20.0 20.0 25.0	PME 2616/0.001 PME 2616/0.0015 PME 2616/0.0022 PME 2616/0.0033 PME 2616/0.0047 PME 2616/0.015 PME 2616/0.015 PME 2616/0.033 PME 2616/0.033 PME 2616/0.047 PME 2616/0.047 PME 2616/0.068 PME 2616/0.015 PME 2616/0.068 PME 2616/0.15	0.7 0.7 0.7 0.7 0.7 1.0 1.6 1.6 2.7 2.7 3.6 4.8

Continued overleaf

PME 260-263 miniprint®

STANDARD UNITS

Cap. μF	Rated VDC	voitage VAC	L max		nsions mm H	x a	requir	Space ements mm E	Order Number	Welght
0.001 0.0015 0.0022 0.0033 0.0047			13.5 13.5 13.5 13.5 13.5	3.9 3.9 3.9 3.9 5.1	7.5 7.5 7.5 7.5 10.5	10.2 10.2 10.2 10.2 10.2	4.2 4.2 4.2 4.2 5.4	14.5 14.5 14.5 14.5 14.5	PME 2631/0.001 PME 2631/0.0015 PME 2631/0.0022 PME 2631/0.0033 PME 2631/0.0047	0.7 0.7 0.7 0.7 0.7 1.0
0.0068 0.01 0.015 0.022 0.033	1000	500	13.5 18.5 18.5 19.0 18.5	5.1 5.2 5.2 7.3 7.8	10.5 10.5 10.5 13.0 13.5	10.2 15.2 15.2 15.2 15.2	5.4 5.7 5.7 7.8 8.3	14.5 19.5 19.5 20.0 19.5	PME 2631/0.0068 PME 2631/0.01 PME 2631/0.015 PME 2631/0.022 PME 2631/0.033	1.0 1.6 1.6 2.7 2.8
0.047 0.068 0.1			24.0 24.0 24.0	7.6 9.0 11.3	14.0 15.5 16.5	20.3 20.3 20.3	8.1 9.5 11.8	25.0 25.0 25.0	PME 2631/0.047 PME 2631/0.068 PME 2631/0.1	3.6 4.0 6.1

SPECIAL TECHNICAL FEATURES

PME 2602 PME 2614, 2616, 2631

Dissipation factor

 $\leq 2^{0/_0} \leq 1.5^{0/_0}$

Measured at 1 kHz and + 20°C

Insulation resistance

 $\begin{array}{lll} C \, \leq \, 0.33 \; \mu F & \geq \, 3000 \; M\Omega & \geq \, 12 \; 000 \; M\Omega \\ C \, > \, 0.33 \; \mu F \; to \, < \, 2 \; \mu F & \geq \, 1000 \; \Omega F & \geq \, 4 \; 000 \; \Omega F \\ C \, \geq \, 2 \; \mu F & > \, 200 \; M\Omega & --- \end{array}$

Measured at $+20^{\circ}$ C after 1 minute with 100 VDC for $U_R=250$ VDC and 400 VDC and 500 VDC for $U_R=630$ VDC and 1000 VDC.

Intermittent voltage

VDC up to +85°C 1.5×rated voltage 1.5×rated voltage

VAC Rated AC voltage may be exceeded. The voltage limitations

depend on application and temperature and have to be deter-

mined from case to case.

Test voltage 1.5×rated voltage for 1 min. 1.5×rated voltage for 1 min.

METALLIZED PAPER CAPACITORS miniprint® PME 260—263

Pulse operation

Rated voltage VDC)		
VDC	10.2	15.2	20.3	25.4
250	440	240	190	150
400	660	380	280	220
630	940	550	380	
1000	1100	660	440	

Max du/dt refer to an unlimited number of charging/discharging provided that the self-heating does not exceed 4°C.

Bump test

4000 bumps with 390 m/s² according to IEC 68-2-29, test Eb.

Terminals

Parallel tinned copper clad steel wires.

Standard length is min. 30 mm.

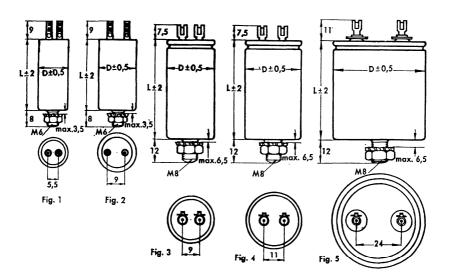
 5.5 ± 0.5 mm can be supplied on request.

PMH 510-523

in aluminium case

The PMH 510—523 series of aluminium can encased and wax impregnated metallized paper capacitors offer a great xariety of small sized, self-healing, reliable capacitors in the range of 0.5 to 60 μ F for working voltages up to 500 VDC (220 VAC).

Temperature range —40°C to +85°C (max. +70°C for AC operation).


Rated voltage 200—500 VDC

75-220 VAC

Capacitance tolerance $\pm 10^{\circ}/_{\circ}$. Closer tolerances can be supplied.

General technical

information See pages 111—116.

STANDARD UNITS

C		voltage		Dime	ensions	Order	number	Weight
Cap. _u F	DC	AC	Flg.		nm	Stud fixing	Clip fixing	g
μ ^Γ 50—60 Hz	50—60 Hz		D	L*)	version	version	(Stud fixing version)	
4			3	25	52	PMH 5112/4	PMH 5102/4	40
6		l	4	30	52	PMH 5112/6	PMH 5102/6	45
6 8		ļ	4	30	52	PMH 5112/8	PMH 5102/8	55
8			3	25	78	PMH 5112A/8	PMH 5102A/8	55
10			4	30	78	PMH 5112/10	PMH 5102/10	65
16			4	35	78	PMH 5112/16	PMH 5102/16	95
20	200	75	4	35	78	PMH 5112/20	PMH 5102/20	120
25			4	35	110	PMH 5112/25	PMH 5102/25	130
25		i	4	40	78	PMH 5112A/25	PMH 5102A/25	135
32			4	45	78	PMH 5112/32	PMH 5102/32	165
40			4	40	110	PMH 5112/40	PMH 5102/40	215
50			5	50	113	PMH 5132/50	PMH 5122/50	235
60			5	50	113	PMH 5132/60	PMH 5122/60	255
2 4 6 8			3	25	52	PMH 5113/2	PMH 5103/2	35
4			3	25	78	PMH 5113/4	PMH 5103/4	50
6			3 3 4	25	78	PMH 5113/6	PMH 5103/6	60
8			4	30	78	PMH 5113/8	PMH 5103/8	70
10			4	30	78	PMH 5113/10	PMH 5103/10	80
12	250	125	4	35	78	PMH 5113/12	PMH 5103/12	95
16			4	40	78	PMH 5113/16	PMH 5103/16	125
20			4	45	78	PMH 5113/20	PMH 5103/20	160
25			4	40	110	PMH 5113/25	PMH 5103/25	175
32			4	45	110	PMH 5113/32	PMH 5103/32	210
40		1	5	50	113	PMH 5133/40	PMH 5123/40	285

^{*)} For clip fixing version reduce L-measure by 2 mm and weight by 3-12 g.

PMH 520-523 see overleaf.

PMH 510-523

STANDARD UNITS

_	Rated	voltage		Dime	nsions	Order	number	Weight
Cap. μF	DC	AC 50—60 Hz	Flg.	D n	nm L*)	Stud fixing version	Clip fixing version	g (Stud fixing version)
0.5 1 2 4 4			1 2 3 3 4	16 20 25 25 35	38 38 52 78 52	PMH 5214/0.5 PMH 5214/1 PMH 5214/2 PMH 5214/4 PMH 5214A/4	PMH 5204/0.5 PMH 5204/1 PMH 5204/2 PMH 5204/4 PMH 5204A/4	20 35 40 65 70
5 6 6 8 10	400	000	4 4 4 4	35 30 40 35 40	52 78 52 78 78	PMH 5214/5 PMH 5214/6 PMH 5214A/6 PMH 5214/8 PMH 5214/10	PMH 5204/5 PMH 5204/6 PMH 5204A/6 PMH 5204/8 PMH 5204/10	75 85 90 125 135
12 16 16	400	200	4 4 4	40 40 45	78 110 78	PMH 5214/12 PMH 5214/16 PMH 5214A/16	PMH 5204/12 PMH 5204/16 PMH 5204A/16	160 195 195
20 25 32			4 4 4	45 45 45	110 110 148	PMH 5214/20 PMH 5214/25 PMH 5214/32	PMH 5204/20 PMH 5204/25 PMH 5204/32	235 285 340
0.5 1 1.5 2 2			2 2 4 4 3	20 20 30 30 25	38 52 52 52 52 78	PMH 5216/0.5 PMH 5216/1 PMH 5216/1.5 PMH 5216/2 PMH 5216A/2	PMH 5206/0.5 PMH 5206/1 PMH 5206/1.5 PMH 5206/2 PMH 5206A/2	25 40 45 50 50
3 4 4 5			3 4 4 4	25 30 40 35	78 78 52 78	PMH 5216/3 PMH 5216/4 PMH 5216A/4 PMH 5216/5	PMH 5206/3 PMH 5206/4 PMH 5206A/4 PMH 5206/5	65 75 75 90
6 7 8 8	500	220	4 4 4 4	35 35 40 35	78 78 78 110	PMH 5216/6 PMH 5216/7 PMH 5216/8 PMH 5216A/8	PMH 5206/6 PMH 5206/7 PMH 5206/8 PMH 5206A/8	110 120 130 135
10 12 12			4 4 4	45 40 35	78 110 148	PMH 5216/10 PMH 5216/12 PMH 5216A/12	PMH 5206/10 PMH 5206/12 PMH 5206A/12	145 205 200
16 16 20 20			4 4 4 5	45 40 45 50	110 148 148 113	PMH 5216/16 PMH 5216A/16 PMH 5216/20 PMH 5236/20	PMH 5206/16 PMH 5206A/16 PMH 5206/20 PMH 5226/20	250 260 315 300

 $^{^{\}circ}$) For clip fixing version reduce L-measure by 2 mm (except for L=38 mm) and weight by 3—12 g.

SPECIAL TECHNICAL FEATURES

Terminations Solder tags at one end.

Dissipation factor Less than 0.006 measured at 50 Hz at $\pm 20^{\circ}$ C. For C $\leq 1.0 \mu$ F

however, less than 0.01 measured at 1 kHz at +20°C.

Insulation resistance The insulation resistance between terminals and case exceeds

12 000 MΩ.

For 200 V and 250 V

ranges

 \geq 200 ΩF measured at $+20^{\circ} C$ after one minute of electri-

fication with 100 VDC.

For 400 V and 500 V

ranges

 $\geq 1000~\Omega F$ measured at $+20^{\circ} C$ after one minute of electrification. Measured at 100 VDC for rated voltage 400 VDC;

at 500 VDC for rated voltage 500 VDC. The insulation resistance of the 400 V and 500 V ranges of capacitors has a stability comparable with that of foil and paper capacitors.

Capacitance instability Less than $\pm 3^{\circ}/_{\circ}$ when stored, or in continuous operation.

Self-healing breakdowns do not significantly change the

capacitance value.

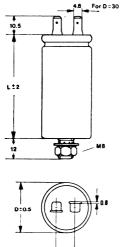
PMH 525

in aluminium case

The PMH 525 series of oil impregnated metallized paper capacitors in aluminium cans are specially designed for operation at 1000 VDC.

The construction offers the valuable inherent self-healing properties of the metallized paper dielectric. Voltage transients of short duration will therefore not damage the capacitor.

Temperature range -40° C to $+85^{\circ}$ C


Rated voltage 1000 VDC (380 V 50 Hz at a temperature of $+70^{\circ}$ C)

Capacitance tolerance $\pm 10^{\circ}/_{\circ}$. Closer tolerances can be supplied.

General technical

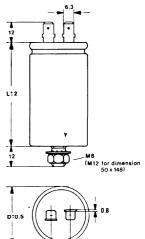

information See pages 111—116.

Fig. 1

11

Fig. 2

STANDARD UNITS

Cap. μF	Rated voltage VDC	Fig.		ensions mm L	Order number	Weight g
0.5		1	30	40	PMH 525P650	50
1		1	35	52	PMH 525P710	70
2		1	35	78	PMH 525P720	110
3		1	40	78	PMH 525P730	135
4	1000	2	45	78	PMH 525P740	150
5		2	40	110	PMH 525P750	210
6		2	45	110	PMH 525P760	245
7		2	45	110	PMH 525P770	250
8		2	50	110	PMH 525P780	280
10		2	50	148	PMH 525P810	360
12		2	50	148	PMH 525P812	375

SPECIAL TECHNICAL FEATURES

Terminations	Flat tabs according to DIN 46 247. The tabs are lock riveted to
	prevent turning

prevent turning.

Dissipation factor
$$${\rm tg}\,\delta \leq \, 1.0^{\rm 0}\!/_{\rm 0}$ at 1 kHz for C $\leq \, 1~\mu F$$$

tg $\delta \leq$ 0.7% at 50 Hz for C > 1 μF

Capacitance instability After 2000 h at $+85^{\circ}$ C and rated voltage $\leq 5^{\circ}/_{\circ}$.

Insulation resistance \geq 1000 ΩF measured at $+20^{\circ} C$ after one minute of electri-

fication. Measured at 500 V.

The insulation between terminals and case exceeds 12 000 M Ω .

Capacitance change Max capacitance change in relation to the capacitance at

 $+20^{\circ}$ C is $\leq 6^{\circ}/_{0}$.

MOTOR RUN CAPACITORS AND DISCHARGE LAMP CAPACITORS PULSE OPERATION CAPACITORS

GENERAL TECHNICAL INFORMATION see pages 111—112.

SPECIAL CAPACITOR DESIGN FEATURES

Standard encapsulation för all AC metallized paper capacitors is an aluminum can with integral stud. Clip fixing versions are available on request. A rubber-faced phenolic disc is used for the sealing of the aluminum can and for the insulation of the terminations.

The capacitors can be used with rated AC voltage up to max. allowed temperature if not otherwise stated in the type specifications. AC ratings refer to RMS value of the sinusoidal voltage at 50 Hz if not otherwise stated.

VOLTAGE RATINGS

If the capacitor is used in AC power circuits at frequences higher than 50 Hz a voltage de-rating is necessary to avoid excessive temperature rise. Fig. 1 and 2 show max. voltage versus frequences.

230 and 250 VAC Capacitors

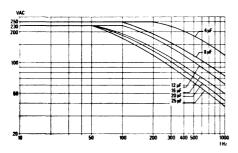


Fig. 1 Voltage ratings v frequency for 230 and 250 VAC capacitors.

600 VAC Capacitors

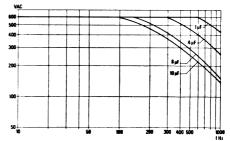


Fig. 2 Voltage ratings v frequency for 600 VAC capacitors.

INTERMITTENT RATING

The capacitor can be used for short periods at voltages higher than rated voltage.

Intermittent rating with 25% in-circuit time is based on a duty cycle of 10 minutes (2.5 minutes switched on and 7.5 minutes switched off).

At voltages above rated voltage the capacitor operates normally but the number of self-healing breakdowns increases and the capacitor life decreases.

If the capacitor is connected to a voltage higher than the intermittent rating the self-healing property of the MP capacitor is jeopardized and a breakdown may result in carbonization of the paper and complete failure of the capacitor.

TEST VOLTAGE

Before shipment every capacitor is tested with a proof voltage.

Between terminals

750 VDC 3 sec for capacitor rated 230 and 250 VAC

2300 VDC 3 sec for capacitor rated 600 VAC.

Between terminals and case

3000 VDC 60 sec.

During this test occasional self-healing breakdowns are allowed.

CAPACITANCE TOLERANCE

Unless otherwise stated in the data specifications the capacitance tolerance are $\pm 10^{\circ}/_{\circ}$.

Other tolerances will be supplied on request.

CAPACITANCE INSTABILITY

After 3 years storage: Less than $\pm 3\%$.

After 10 000 hours at $\pm 70^{\circ}$ C and rated voltage: Less than $5^{\circ}/_{0}$.

Self-healing breakdowns do not significantly change the capacitance value.

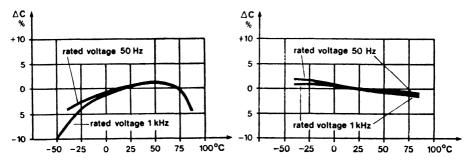


Fig. 3 Capacitance change v temperature for 230 and 250 VAC capacitors.

Fig. 4 Capacitance change v temperature for 600 VAC capacitors.

FOR AC OPERATION

AMBIENT TEMPERATURE

The maximum limit of the temperature range is the highest permissible temperature of the outer surface of the capacitor. In AC operation the temperature rise of the capacitor due to its losses should be given special attention. In critical cases the surface temperature of the capacitor should be checked after the conditions have become stable.

BUMP TEST

IEC 68-2-29, test Eb. The capacitor, properly fixed, will withstand at least 4000 bumps with 390 $\,\mathrm{m/s^2}$ retardation.

The capacitor, properly fixed, will withstand at least 4000 bumps with 390 m/s² retardation.

HUMIDITY RESISTANCE

After a test to IEC No. 68-2, test Ca for 56 days at $+40^{\circ}$ C and 90° /₀ to 95° /₀ relative humidity the insulation resistance is still above specified limits.

DISSIPATION FACTOR

The dissipation factor is of interest especially for capacitors designed to operate on AC. The dielectric losses cause heating of the capacitor and, under unfavourable circumstances, may lead to destructive breakdown. This problem, however, is critical only in large capacitance units or under unfavourable temperature conditions.

The normal value of $\tan\delta$ for MP AC capacitors is about 0.005, for mixed dielectric $\tan\delta$ is about 0.002, measured at 50 Hz and max. permitted ambient temperature.

Before shipment every capacitor is tested at $\pm 20^{\circ}\text{C}$ 50 Hz and max. $\tan\delta$ of the loss angle for different voltages is

 $\tan\delta \leq 0.6^{\circ}/_{\circ}$ at 230 and 250 VAC rating $\tan\delta \leq 0.2^{\circ}/_{\circ}$ at 600 VAC rating

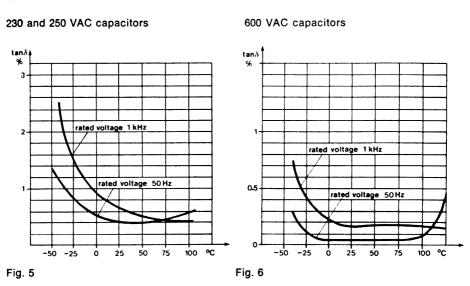


Fig. 5 and 6 show typical curves for the dissipation factor v temperature.

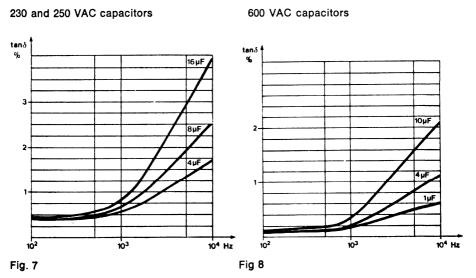


Fig. 7 and 8 show typical curves for the dissipation factor in $^{0}/_{0}$ v frequency for different capacitances.

INSULATION RESISTANCE

 \geq 1000 ohmfarads at $+20^{\circ}\text{C}$ after one minute of electrification between terminals. The insulation resistance between terminals and case exceeds 12 000 megohms. Insulation resistance is temperature dependent and is approximately halved for each 7°C of temperature increase.

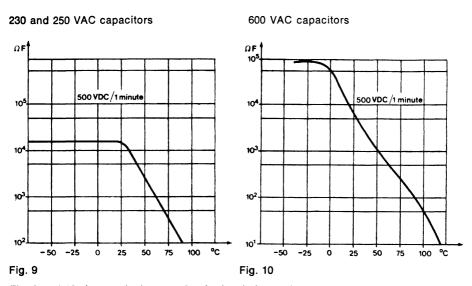


Fig. 9 and 10 show typical curves for the insulation resistance v temperature.

Insulation resistance is influenced by humidity penetration and the variations due to this are given in the data specifications.

MOTOR APPLICATIONS

Connections and operation of single-phase induction motors.

In single-phase induction motors equipped with a capacitor three methods of operation can in principle be differentiated.

- The capacitor is used only to produce a start rotating field and is disconnected by for example a centrifugal switch when the motor speeds up. Fig.
 The motor continues to run on the rotating field which has arisen by means of the combination of the stator winding and the rotating rotor. When the capacitances are high enough the starting torque can reach 200% of the full load torque.
- The capacitor remains connected for the whole operational time of the motor.
 Fig. 2. The capacitance of the operating capacitor must not be too high as the auxiliary winding then becomes continuously overloaded and results in decreased starting torque.

On the other hand the conditions will be much more favourable when the motor is running. An independent rotating field remains in the stator because of the phase displacement function of the current in the auxiliary winding. As the operative rotating field no longer can be achieved on the longer way via the rotor, the stray losses, which occur when forming this rotating field, are also eliminated. The decrease of the current-heat-losses and iron-losses leads to an improvement of the degree of functioning and smaller dimensions.

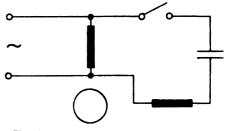


Fig. 1

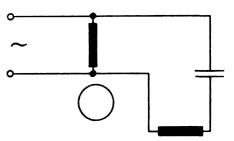
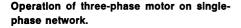



Fig. 2

The single-phase motor with an operational capacitor reaches about 90% of the maximum power of a three-phase motor with the same dimensions.

3. By a combination of the connections according to fig. 3 the capacitor for continuous operation (the dimensioned operational capacitor) and the capacitor for short time operation (the dimensioned start capacitor) are connected parallel. The capacitances for these two capacitors are combined and will give a large starting torque. When the motor is speeded up the start capacitor is disconnected for example by a centrifugal switch. The operational capacitor which is still connected will preserve the rotating field of the stator, give a good degree at function, high power factor and high power in a motor of small dimensions

By means of a motor capacitor it is also possible to operate three-phase motors of normal construction with AC voltage on the single-phase network. It is of course impossible to reach the same start and operating conditions, but in this way the field of application for existing electrical tools and appliances can be considerably expanded. According to fig. 4 and 5, two of the motor terminals are connected to the network and the third is connected via an operational capacitor to one of the network mains.

In order to change the rotation direction, move the capacitor terminal from one network mains to the other. If the motor can-

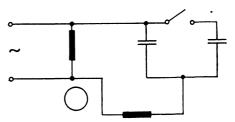


Fig. 3

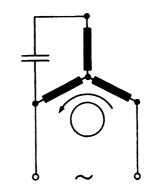


Fig. 4

not be started by means of one operation capacitor only, an extra start capacitor must be used, see fig. 6. The start capacitor should be twice as large as the operation capacitor.

A start torque of about $30^{\circ}/_{\circ}$ of the full load torque can be attained with these connections. The power of the motor is then about $80^{\circ}/_{\circ}$ of the maximum power at three-phase operation.

Selection of capacitor.

As a rule of thumb it can be said that the operation capacitor for single-phase operation of a three-phase motor is about 70 μ F/kW or 60μ F/HP at 220 V \sim mains voltage. The capacitor voltage will then be about 250 V \sim .

It should be remembered that this is only a general guide and that variations are likely to occur.

When selecting a capacitor for a single-phase motor both technical and economical aspects are decisive. Because of the possibility to wind a single-phase motor in many different ways (division of the winding space for main and auxuliary winding, selection of the number of turns of winding and cross sections) it is impossible to give any universal standards for determination of capacity and operating voltage for the motor capacitors which are needed for a certain motor power. Therefore, we refer to the manufacturer's instruction.

Fig. 5

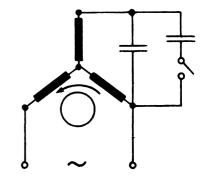


Fig. 6

LAMP CAPACITOR APPLICATIONS

Discharge lamps such as fluorescent lamps, high pressure mercury lamps and sodium vapour lamps require, in order to work, a ballast coil or a transformer to limit the current and to assure good ignition function. The total power required of a fluorescent lamp will consist of active and reactive power on account of the magnetic field of the inductor.

The reactive power derives from a phase displacement and an increase in the current resultant on the size of the magnetic field. This means that a high current is produced, and thus a surplus of power. It can be said that the reactive power oscillates between the current source and the lamp, serving no useful purpose. For this reason electricity distributors have to over-dimension their distribution system and normally insist on endusers applying power compensation to their fluorescent lamps. Power compensation can be attained by mounting a capacitor with suitable capacitance in the lamp, thus compensating the reactive power. The capacitor causes phase displacement of the current with the opposite effect. The reactive power can be said to oscillate between the lamp and the capacitor.

Parallel compensation

Normally the electricity distributor demands compensation to $\cos \varphi = 0.90$ which results in considerable improvement and only an insignificant deviation from the optimum.

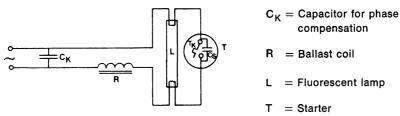


Fig. 1 Parallel compensation for one fluorescent lamp.

Lamp Capacitors Ranges

PMN 511 Metallized Paper Capacitor page 144.

PHN 451 Metallized Polypropylene Capacitor page 148.

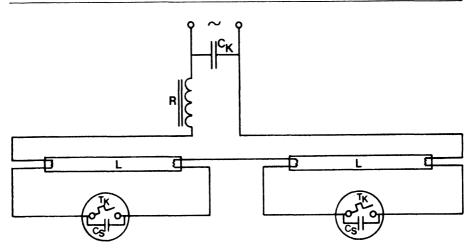


Fig. 2 Parallel compensation for two fluorescent lamps.

For parallel compensation at 220 V 50 Hz to cos $\phi\!=\!0.90$ the following may be used as guiding values.

Fluorescent lamps		Mercur	y lamps	Sodium lamps		
Power W	Cap. μ F			Power W	Cap. μF	
1×20	4.5	50	8	45	20	
2×20	4	80	8	60	20	
1×40	4	125	10	85	20	
2×40	8	250	20	140	25	
3×40	12	400	25	200	2×20	
4×40	16	700	2×20	400	2×25	
1×65	7	1000	3×20			
2×65	14	,				
3×65	20					

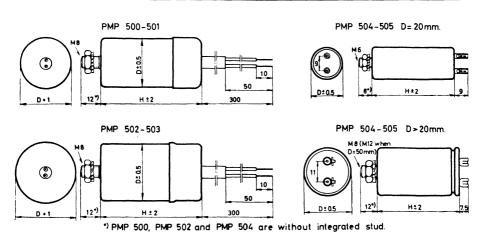
PMP 500-505

motor capacitors for 230—250 VAC

The PMP 500—505 is a range of metallized paper capacitors intended for start and continuous operation in AC motors. The metallized paper construction gives self-healing properties and high, short duration, transient voltages will therefore not damage the capacitors.

Temperature range —40°C to +70°C

Rated voltage 230—250 VAC 50 Hz


Capacitance tolerance $\pm 10^{\circ}/_{\circ}$

Approvals VDE 0560 Teil 8/6 67.

General technical

information See pages 128—135.

Stud fixing types	Clip fixing types	Leads and cap
PMP 501	PMP 500	PVC insulated twin-core 0,75 mm ² (20/0.061) flexible lead of 300 mm (14") length and moulded insulating cap.
PMP 503	PMP 502	PVC insulated twin core 0.75 mm ² (20/0.061) flexible lead of 300 mm (14") length and aluminium cap.
PMP 505	PMP 504	Without leads or cap. With solder tags.

Dimensions in mm

STANDARD UNITS

Cap.	Rated voltage VAC 5060 Hz	Dimensions	Order Number	Weight	Appro-
"	at +60°C +70°C	in mm D L*)	Stud fixing Clip fixing version version	Stud fixing version	vals

With 300 mm cable and plastic cap

2 3 4 250 250 6 8	30 62 35 62 30 88 35 88 35 88 40 88	PMP 5016/2 PMP 5016/3 PMP 5016/4 PMP 5016/5 PMP 5016/6 PMP 5016/8	PMP 5006/2 PMP 5006/3 PMP 5006/4 PMP 5006/5 PMP 5006/6 PMP 5006/8	60 85 95 110 110	VDE VDE VDE VDE
10 12 16 20 25 25 230 —	45 88 40 120 45 120 45 158 50 158	PMP 5016/10 PMP 5016/12 PMP 5016/16 PMP 5016/20 PMP 5016/25	PMP 5006/10 PMP 5006/12 PMP 5006/16 PMP 5006/20 PMP 5006/25	165 225 255 355 380	VDE VDE

With 300 mm cable and aluminium cap

3 4 5 8	250	250	35 30 35 40	72 98 98 98	PMP 5036/3 PMP 5036/4 PMP 5036/5 PMP 5036/8	PMP 5026/3 PMP 5026/4 PMP 5026/5 PMP 5026/8	90 100 115 155	VDE VDE VDE VDE
10 12	250	230	45 40	98 130	PMP 5036/10 PMP 5036/12	PMP 5026/10 PMP 5026/12	170 230	VDE VDE

^{*)} For clip fixing version reduce L measure by 1-3 mm and weight by 5 g (approx.).

PMP 504-505 see overleaf.

Cap. Rated voltage μF VAC 50—60 Hz at + 60°C +70°C	Order Number stud fixing clip fixing version version	Weight g Appro- Stud fixing vals	
--	--	--	--

With solder tag terminals

0.5 1 2 3 4 5 6 7 8	250	250	20 20 30 35 30 35 35 35 40	38 52 52 52 78 78 78 78 78	PMP 5056/0.5 PMP 5056/1 PMP 5056/2 PMP 5056/3 PMP 5056/4 PMP 5056/5 PMP 5056/6 PMP 5056/7 PMP 5056/8	PMP 5046/0.5 PMP 5046/1 PMP 5046/2 PMP 5046/3 PMP 5046/4 PMP 5046/6 PMP 5046/6 PMP 5046/7 PMP 5046/8	25 40 55 70 80 95 110 125 135	VDE VDE VDE VDE VDE VDE VDE
9 10 12 15	250	230	40 45 40 45	110 78 110 110	PMP 5056/9 PMP 5056/10 PMP 5056/12 PMP 5056/15	PMP 5046/9 PMP 5046/10 PMP 5046/12 PMP 5046/15	145 150 210 245	VDE VDE VDE VDE
16 20	250	230	45 45	110 148	PMP 5056/16 PMP 5056/20	PMP 5046/16 PMP 5046/20	250 350	VDE VDE
25	230		50	148	PMP 5056/25	PMP 5046/25	375	VDE

^{*)} For clip fixing version reduce L measure by 2 mm and weight by 3-12 g (approx.).

Motor capacitors with flat tab connectors see PMP 508—509 page 142.

Notes

PMP 508-509

motor capacitors for 250 VAC (360 V intermittent)

The PMP 508 and 509 M series is a range of metallized paper capacitors intended for continuous and intermittent operation in AC motors.

The metallized paper construction gives self-healing properties and high, short duration, transient voltages will therefore not damage the capacitors.

Temperature range

-40°C to +70°C

Capacitance tolerance

±10%

Approvais

SEV. VDE 0560 Teil 8/6.67 (see table).

General technical

information

See pages 128-132.

Application notes

See pages 133-135.

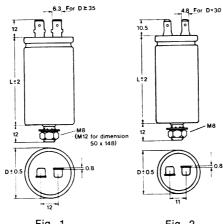


Fig. 1

Fig. 2

STANDARD UNITS

For PMP 508-509T 600 VAC see page 150, pulse application capacitors.

Cap. μF	50-	voltage -60 Hz to +70°C Intermittent operation 25%		ensions mm L**)	Order Number stud fixing version (For clip fixing version replace PMP 509 by PMP 508)	Approvals
2 3 3.5 4 4 5 6	250	360	30 30 30 30 35 35 35 40	52 62 78 78 62 78 78 78	PMP 509M720 PMP 509M730 PMP 509M735 PMP 509MA740 PMP 509M740 PMP 509M750 PMP 509M760 PMP 509M780	SEV SEV, VDE SEV, VDE SEV, VDE SEV, VDE SEV, VDE
10 10 12 15 16 20 20	230 (250)*	360	45 40 40 45 45 50 45	78 110 110 110 110 110 148	PMP 509M810 PMP 509M810 PMP 509M812 PMP 509M815 PMP 509M816 PMP 509M820 PMP 509M820	SEV, VDE SEV, VDE SEV, VDE SEV, VDE SEV, VDE SEV, VDE SEV, VDE
25	230*	360*	50	148	PMP 509M825	VDE

^{*)} Max. temperature +60°C.

SPECIAL TECHNICAL FEATURES

Terminations

Flat tabs in accordance with DIN 46 247. The tabs are lock riveted to prevent turning.

^{**)} For clip fixing version reduce L dimension by 2 mm and weight by 3—12 g.

PMN 511

discharge lamp capacitors for 230 VAC

PMN 511 is a metallized paper, mineral wax impregnated capacitor specially designed for power factor compensation in discharge lamp circuits.

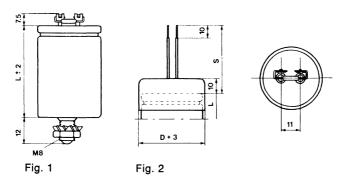
Outstanding features are:

- Excellent and reliable inherent stable electrical characteristics ensuring long capacitor life
- High operational reliability even under the worst permissible conditions
- No seepage of hard-wax impregnant in the event of damage to the case
- Inherent self-healing property preventing short-circuiting of the capacitor
- Built-in overload safety device

Temperature range —40°C to +85°C

Rated voltage 230 V 50 Hz

Approvals The capacitor meets the CEE specification No. 12, 1954.


edition 1968, for fluorescent lighting capacitors and is tested and approved by approval boards in Denmark, Finland, Nor-

way and Sweden.

General technical

Information See pages 128—132.

Application notes See pages 136—137.

STANDARD UNITS

Cap. μF ±10°/•	Rated voltage V 50 Hz		ensions mm L	Stud	Order Number¹)	Weight g	Quantity/ Package
2 4 4.5 5 6		30 30 30 30 35 35	52 78 78 78 78 78	M8 M8 M8 M8 M8	PMN 511M720B PMN 511M740B PMN 511M745B PMN 511M750B PMN 511M760B	50 75 75 105 115	110 110 110 80 80
7	230	35	78	M8	PMN 511M770B	125	80
8		40	78	M8	PMN 511M780B	135	50
8		35	110	M8	PMN 511MA780B	140	80
9		40	78	M8	PMN 511M790B	145	50
10		45	78	M8	PMN 511M810B	145	50
10		35	110	M8	PMN 511MA810B	140	80
12		40	110	M8	PMN 511M812B	195	50
12		35	148	M8	PMN 511MA812B	190	40
14		40	110	M8	PMN 511M814B	235	50
16		45	110	M8	PMN 511M816B	245	50

¹⁾ Add "HS 400" for fig. 2 capacitors.

SPECIAL TECHNICAL FEATURES

Leads and shrouds Capacitors fitted with plastic shroud and 0.75 mm² PVC insu-

lated solid leads are available as standard version. See fig. 2. Add "HS 400" to order number for capacitors with S=400 mm.

Safety device See overleaf.

Mounting See overleaf.

Metallized Polypropylene Capacitors for 250 VAC Flourenscent Lighting Applications are described on pages 148—149.

PMN 511

Safety device

As protection against overload and consequential damages a safety device is builtin.


In order to ensure proper functioning of the safety device the capacitor should be mounted to allow expansion by 6 mm lengthwise.

The safety device is activated when pressure arises in the capacitor as a result of e.g. overload. The flutes (2) in the can straightens out ripping the terminal leads (1) from the joint with the capacitor winding (6).

The capacitors is thus disconnected from the mains before any leakage or other damage can occur.

Mounting

The capacitor can be mounted in any position without risk of seepage. The simplest method of mounting is to use the integral stud at the bottom of the case. To ensure perfect function of the safety device, mount the capacitor to allow for expansion 6 mm in its longitudial direction. Do not place the capacitor in the vicinity of a ballast coil or other heatgenerating component. The life of the capacitor is doubled every time the temperature falls approximately 7°C.

- 1) Lead wire
- 2) Flute
- 3) Capacitor winding
- 4) Cover
- 5) Terminal
- Solder with low melting point

Notes

PHN 451

Recent developments have resulted in alternative designs to the metallized paper capacitor for fluorescent lighting applications.

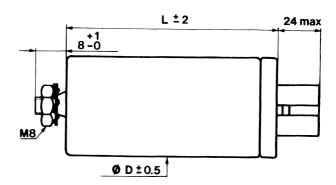
PHN 451 is a metallized polypropylene capacitor with a dry winding encapsulated in hermetically sealed aluminium can.

Outstanding features are:

- Excellent and realiable inherent stable electrical characteristics ensuring long capacitor life
- High operational reliability even under the worst permissible conditions
- No seepage of impregnant in the event of damage to the case
- Inherent self-healing property preventing shortcircuiting of the capacitor
- Built-in overload safety device

Temperature range —40°C to +85°C

Rated voltage 250 V 50 Hz


Approvals The capacitor meets the CEE specification No. 12, 1954,

edition 1968, for fluorescent lighting capacitors and is tested and approved by approval boards in Denmark, Finland, Nor-

way and Sweden, in accordance with SEMKO 21 A-1961.

Application notes See pages 136—137

STANDARD UNITS

Cap.	Rated voltage	Dimensions In mm		Order Number	Weight	Quantity/
± 10°/ ₀	V 50 Hz	D	L		g	Package
0		20	73	PHN 451MA720	35	110
2 4		30 30	73 73	PHN 451MA740	45	110
4.5		30	73 73	PHN 451MA745	45	110
		30	73	PHN 451MA750	50	110
5 6		35	73	PHN 451MD760	55	80
		55	, 0	11111 1011110100		
7		35	73	PHN 451MD770	60	80
		35	73	PHN 451MD780	65	80
8 8 9	250	30	128	PHN 451MB780	65	40
9		40	73	PHN 451MG790	70	50
10		40	73	PHN 451MG810	70	50
10		30	128	PHN 451MB810	70	40
12		40	73	PHN 451MG812	80	50
12		30	128	PHN 451MB812	80	40
14		35	128	PHN 451ME814	95	50
16		35	128	PHN 451ME816	105	40
18		35	128	PHN 451ME818	115	40
20		40	128	PHN 451MH820	130	25
25		40	128	PHN 451MH825	145	25

SPECIAL TECHNICAL FEATURES

Terminal assembly The capacitors are fitted with terminal block for snap-in con-

nection of 0.5-1.5 mm² solid wire.

the terminal block.

Safety device See page 146.

Mounting See page 146.

Dissipation factor $\tan \delta \leq 0.1\%$ at 50 Hz, +85°C.

Marking The capacitor is marked with capacitance, capacitance tole-

rance, voltage and temperature ratings, code No., manufacturing date, climatic category according to DIN (GPF) approval

marks and Rifa symbol.

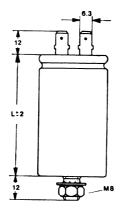
METALLIZED PAPER CAPACITORS

PMP 508-509

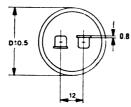
pulse operation capacitors for 600 VAC

PMP 508—509T is a range of metallized paper capacitors of the mixed dielectric construction specially made for pulse operation.

Low losses at higher frequencies make the capacitor ideal as a commutator capacitor in many thyristor circuits. For higher current requirements use PMP 518—519. See page 152.


Temperature range —40°C to +70°C

Rated voltage 600 V 50 Hz up to $+70^{\circ}$ C


Capacitance tolerance ± 10%

General technical information

See pages 128-132.

(M12 for dimension 50×148)

STANDARD UNITS

	Rated		nsions	Order 1	104-1-kA	
Cap. μF	voltage AC RMS 50 Hz	in D	mm L*)	Stud fixing version	Clip fixing version	Weight g
0.5		35	40	PMP 509T650	PMP 508T650	55
0.6		35	40	PMP 509T660 PMP 509T710	PMP 508T660 PMP 508T710	60
2		35 35	52 78	PMP 5091710 PMP 509T720	PMP 5081710	70 95
2 3		40	78	PMP 509T730	PMP 508T730	130
4	600	45	78	PMP 509T740	PMP 508T740	150
5		50	78	PMP 509T750	PMP 508T750	200
5		45	110	PMP 509TA750	PMP 508TA750	245
6		45	110	PMP 509T760	PMP 508T760	260
8		50	110	PMP 509T780	PMP 508T780	280
10		50	148	PMP 509T810	PMP 508T810	375

^{*)} For clip fixing version reduce L dimension by 2 mm and weight by 3-12 g.

SPECIAL TECHNICAL FEATURES

higher than 50 Hz a voltage derating is necessary to avoid

excess temperature rise.

Terminations Flat tabs according to DIN 46 247. The tabs are lock riveted to

prevent turning.

METALLIZED PAPER CAPACITORS

PMP 518-519

for pulse operation 600 VAC

PMP 518—519 is a range of metallized paper capacitors intended for thyristor commutating or as protection capacitors in combination with a resistance in thyristor circuits.

Application class

DIN 40040 GSF

Temperature range

-40°C to +70°C

Rated voltage

600 V 50 Hz up to +70°C

Capacitance tolerance

±10%

General technical

information

See pages 128-132.

Dimensions

See page 150.

STANDARD UNITS

Cap. μF	Rated voltage AC RMS 50 Hz		nsions nm L*)	Rifa Cod Stud fixing version	e Number Clip fixing version	Weight g
0.5		35	40	PMP 519T650	PMP 518T650	55
1		35	50	PMP 519T710	PMP 518T710	70
2		35	76	PMP 519T720	PMP 518T720	95
3	600	40	76	PMP 519T730	PMP 518T730	130
4		45	76	PMP 519T740	PMP 518T740	150
5		50	76	PMP 519T750	PMP 518T750	200
6		45	108	PMP 519T760	PMP 518T760	245
8		50	108	PMP 519T780	PMP 518T780	280
10		50	148	PMP 519T810	PMP 518T810	375

^{*)} Add 2 mm for stud fixing version.

SPECIAL TECHNICAL FEATURES

High frequency applications

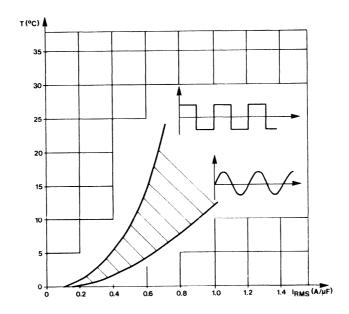
The PMP 518—519 series has reinforced internal wiring to meet low loss requirements in high frequency applications.

Rated Voltage

If the capacitor is used in AC power circuits at frequencies higher than 50 Hz a voltage derating is necessary to avoid

excess temperature rise.

See page 128.


Peak voltage

periodic 850 V transient 2300 V

Pulse shape $\left(\frac{du}{dt}\right)$

up to 600 V 70 V/ μ s

Max surface temperature T of the case at different currents, see figure below.

When the ambient temperature exceeds the temperature limit (+70°C) of the case forced cooling must be used.

For operation above recommended data please consult Rifa.

Dissipation factor

 $tan\delta$ max value $0.2^{\circ}/_{\circ}$

typical value 0.1%

Terminations

Flat tabs according to DIN 46 247. The tabs are lock riveted to

prevent turning.

INTRODUCTION fo = 1,3 MHz PMC 550-7 PMC 5 OPF 40/-85 °C

The Rifa interference suppressors are metallized paper capacitors specially designed for radio interference suppression. The good self-healing properties of the MP capacitor make them outstanding among other types of capacitors as radio interference suppressors on mains voltage. The epoxy impregnation and encapsulation offer excellent electrical robustness, small dimensions and a one-piece solid construction.

GENERATION OF RADIO INTERFERENCE

There are two main sources of radio interference:

Equipment which because of its construction generates energy of high frequency.
 High frequency generators for industrial, medical and scientific use, and oscillators in radio and TV sets belong to this type of equipment.

Equipment in which rapid changes of current give a wide frequency spectrum which
causes radio interference. This rapid change may be caused by an electronic device
such as a thyristor or a triac, or by an electro-mechanical device such as a switch or
a commutator of a motor.

An equipment connected to the mains causes two modes of interference currents to flow in the conductors, see figure 1. One symmetrical current which flows in different directions in the phase and in the neutral conductor. One asymmetrical current which flows in the same direction in the two conductors and back to the equipment via earth. This earth connection may consist of an earth lead or the capacitance between the equipment and its surroundings. The interference on long and medium waves will often increase when a piece of equipment is grounded, because the impedance to the surroundings is short-circuited so that the asymmetrical interference current increases.

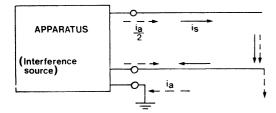


Fig 1. An equipment causes two modes of interference current.

ia = asymmetrical current

is = symmetrical current

The interference frequencies vary depending on the type of equipment as can be seen in figure 2.

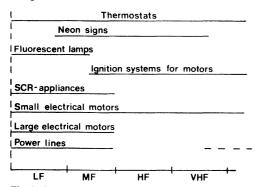


Fig 2. Approximate interference frequencies from different electrical equipment

SUPPRESSION

Interference suppression is carried out in two ways. One way is to decrease the actual generation of interference, the other way is to stop the interference from leaving the appliance. In the latter case suppressors are connected at the mains input of the appliance in such a way as to make either a stop by chokes connected in series with the mains or a short-circuit by capacitors connected between the mains terminals and or between the terminals and the metal body of the appliance. For suppression on long and medium waves capacitors are used in the first place, but if necessary, chokes are added. As a rule both capacitors and chokes are used on VHF. Suppression is also, in some cases, carried out by shielding the appliance.

In appliances which have a switch, a spark suppressor is often connected to the switch in order to decrease the interference generated.

MAXIMUM VALUES OF RADIO INTERFERENCE

In order not to disturb radio reception the outgoing interference from an equipment must be reduced to a tolerable level. Conducted interference is measured on the mains input and radiated interference is measured with a field strength measuring apparatus.

International work on radio interference is carried out by the International Special Committee on Radio Interference, abbreviated CISPR from its French name "Comité International Spécial de Perturbations Radioélectriques".

Limits for radio interference as recommended by the CISPR are:

Frequency range (MHz)	≤ 700	Power (W) 700—1000	1000—2000
0.15—0.5	66 dB	70 dB	76 dB
0.5—5	60 dB	64 dB	70 dB
5—30	66 dB	70 dB	76 dB

Frequency MHz	45	65	90	150	180	220
Limits dB (1 pW) at ≤ 700 W	46	46	47	49	51	52

SAFETY CONSIDERATIONS

The safety problem must be considered. A radio interference capacitor must in many countries be approved by the national safety regulation board either as a radio interference capacitor or as a part of an equipment.

According to IEC the two-terminal suppressor capacitors are subdivided into two groups, X capacitors and Y capacitors (SEV a capacitors and b capacitors). X capacitors are for use only in positions where a failure of the capacitor would not expose anybody to electric shock. Y capacitors are for use in positions where a failure of the capacitor could expose somebody to dangerous electric shock. The two applications are shown in the figure 3.

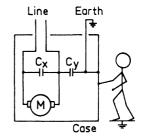


Fig. 3 Positioning of X and Y capacitors

 C_{χ} is connected across the supply lines for short-circuiting interference voltages across the line conductors. The capacitor (or failure of it) is not hazardous to a man who touches the case of the motor M and it may therefore be an X capacitor.

 C_y is connected from one side of the mains supply to the earth line and to the case for decoupling of asymmetric interference voltages. A breakdown of the capacitor or too high a capacitance is therefore a hazard if the earth line should be open circuit or connected to earth through too high a resistance. The capacitance of Y capacitors must be limited to a certain value depending on the type of equipment in which the capacitor is used (we refer to national Approval Board specifications). The capacitor is dimensioned to minimize the risk of electrical breakdown.

EXAMPLES OF SUPPRESSION

A. Motors

Commutating motors in for example hand tools, sewing machines, vacuum cleaners, mixers etc. generate radio interference from long waves up to VHF. With better commutation less interference is generated. However, it is difficult to achieve good commutation in motors having a variable speed.

In figure 4 different ways of suppressing a motor are shown. It is most important that the suppressing capacitor is placed near the motor so that the terminals of the capacitor can be as short as possible. In most cases it is enough to use capacitors as suppressors but sometimes when a high level of interference is generated at high frequencies, chokes are also needed.

The X capacitor usually has a capacitance of the size 0.1 μ F and the Y capacitor a capacitance of the size 2500—5000 pF. The inductance in the high frequency coils is usually 5—10 μ H.

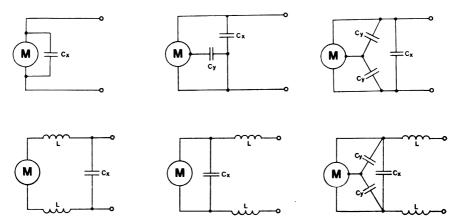


Fig. 4 Different ways of suppressing motors

B. Appliances with thyristors and triacs

Thyristors always generate a very high level of interference on long and medium waves. The noise level on long waves can be as high as 1—2 V (the noise from a commutator motor is hardly more than 30 mV).

The thyristor regulator is as a rule a separate unit not built together with the load. The interference will therefore be conducted also along the network to the load. Approx. interference level on both the mains side and the load side of a thyristor regulator with a 100 W resistive load is shown in fig. 5. The limits given by CISPR are also shown.

Radio interference suppression of a thyristor regulator is often made with a capacitor and a coil as shown in figure 6 a. The capacitance often is in the order of 0.1 μ F and the inductance is of the size 1—4 mH. Approx. interference level from a regulator suppressed with a 0.1 μ F capacitor, a 3 mH inducator and with a load of 100 W is shown in figure 6 b. The interference level is below the limits given by CISPR.

The asymmetrical interference depends very much on the mechanical construction of the regulator, for which reason the asymmetrical interference must be taken into consideration when designing the regulator. It is not possible to give any general rules for suppressing the asymmetrical noise, but in general the asymmetrical noise is much lower than the symmetrical and will be suppressed when the symmetrical noise is suppressed.

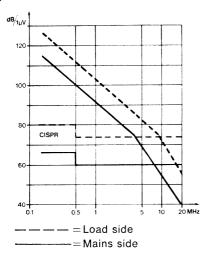
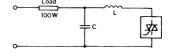



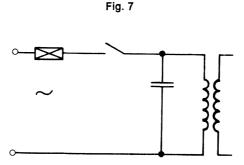
Fig. 5 Approx. interference levels from thyristor regulator with 100 W resistive load

Fig. 6 b The regulator in fig. 5 suppressed with C=0.1 μ F and L=3 mH

Fig. 6 a Suppression of a thyristor regulator

C. Fluorescent lamps

Fluorescent lamps generate interference on long and medium waves. The interference from many types of lamps is in general not very high. Much more annoying is an additional interference which may suddenly occur, especially when the lamps are growing old. CISPR therefore prescribes a minimum insertion loss in the lamp fitting instead of a maximum allowable interference level.


In fluorescent lamps supplied with a phase correcting capacitor, this capacitor serves as a radio interference suppressor. Other fluorescent lamps need a capacitor of 0.05 to 0.1 μ F between the branches for interference suppression. High power fluorescent lamps may need capacitors up to 0.5 μ F.

D. Mains supply switches

Mains supply switches in consumer electronic equipment such as tape recorders, Hi-Fi amplifiers, and turntables, need capacitive suppression to prevent interference caused by transients at a break and make of the contact fig 7. For such applications the Rifa metallized paper interference suppressor capacitor is the optimal choice. In this catalogue two standard ranges are described. These ranges are tested and approved by several European Approval Boards. (See page 162 and 166.)

For special interference suppression applications with mains supply switches there are special interference capacitor versions available meeting local requirements with regard to voltage ratings and Approval Board specifications. Please consult Rifa.

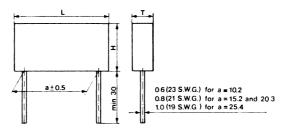
PME 271

PME 271 is a metallized paper capacitor for X and Y applications. Metallized paper is a dielectric superior to metallized synthetic material with regard to pulse operation and self-healing performance. Capacitor element design for low inductance. Impregnated and encapsulated in epoxy resin. Additional humidity protection provided by embedded metal label.

Parallel tinned copper clad steel wires, held to close tolerances on 0.1" modules. Standard terminal length is minimum 30 mm.

Rated voltage 250 V 50 Hz up to +85°C

IEC category 40/085/56


Temperature range -40° C to $+85^{\circ}$ C

Capacitance tolerance $\pm 10^{\circ}/_{\circ}$ for C > 0.1 μ F

 $\pm 20^{\circ}$ /o for C $\leq 0.1 \ \mu F$

Approvals SEMKO, NEMKO, DEMKO, EI, VDE, SEV, ÖVE (see table).

General technical data See page 111.

Space requirements

STANDARD UNITS

Сар.	1 o MHz	l		ons in r		Order Number	Approvals*)			
X-CAPAC	K-CAPACITORS									
1000 pF 1500 2200 3300 4700 6800	41 35 29 24 20 17	13.5 13.5 13.5 13.5 13.5 18.5	3.9 3.9 3.9 5.1 5.2	7.5 7.5 7.5 7.5 10.5 10.5	10.2 10.2 10.2 10.2 10.2 15.2	PME 271M410 PME 271M415 PME 271M422 PME 271M433 PME 271M447 PME 271M468	S N D EI VDE SEV ÖVE S N D EI VDE SEV ÖVE			
0.01 μF	14	18.5	5.2	10.5	15.2	PME 271M510	S N D EI VDE SEV ÖVE			
0.015	10	18.5	5.2	10.5	15.2	PME 271M515	S N D EI VDE SEV ÖVE			
0.022	8.5	19.0	7.3	13.0	15.2	PME 271M522	S N D EI VDE SEV ÖVE			
0.033	6.9	19.0	7.3	13.0	15.2	PME 271M533	S N D EI VDE SEV ÖVE			
0.047	5.8	19.0	7.3	13.0	15.2	PME 271M547	S N D EI VDE SEV ÖVE			
0.068	4.8	18.5	7.8	13.5	15.2	PME 271M568	S N D EI VDE SEV ÖVE			
0.1	3.6	24.0	7.6	14.0	20.3	PME 271M610	S N D EI VDE SEV ÖVE			
0.15	3	24.0	9.0	15.5	20.3	PME 271M615	S N D EI VDE SEV ÖVE			
0.22	2.5	24.0	11.3	16.5	20.3	PME 271M622	S N D EI VDE SEV ÖVE			
0.33	1.8	29.5	12.1	19.5	25.4	PME 271M633	S N D VDE SEV ÖVE			
0.47	1.5	30.5	15.3	22.0	25.4	PME 271M647	S N D VDE SEV ÖVE			
0.6	1.3	30.5	15.3	22.0	25.4	PME 271M660	S N D VDE SEV ÖVE			
Y-CAPACI	TORS					·				
1000 pF	41	13.5	3.9	7.5	10.2	PME 271Y410	S N D EI VDE SEV ÖVE			
1500	35	13.5	3.9	7.5	10.2	PME 271Y415	S N D EI VDE SEV ÖVE			
2200	29	13.5	3.9	7.5	10.2	PME 271Y422	S N D EI VDE SEV ÖVE			
3300	24	13.5	3.9	7.5	10.2	PME 271Y433	S N D EI VDE SEV ÖVE			
4700**)	20	13.5	5.1	10.3	10.2	PME 271Y447	S N D EI VDE SEV ÖVE			
6800	17	13.5	5.2	10.5	15.2	PME 271Y468	S N D EI VDE SEV ÖVE			
0.01 μF	14	18.5	5.2	10.5	15.2	PME 271Y510	S N D EI VDE SEV ÖVE			
0.015	10	18.5	5.2	10.5	15.2	PME 271Y515	S N D EI VDE SEV ÖVE			
0.022	8.5	19.0	7.3	13.0	15.2	PME 271Y522	S N D EI VDE SEV ÖVE			

^{*)} S = Sweden (SEN 43 29 01) N = Norway (NEMKO 132/56)

D = Denmark (DEMKO) El = Finland (El E20-71

EI = Finland (EI E20-71) VDE = Germany (VDE 0560/7)

SEV = Switzerland (SEV 1017/1959) OVE = Austria (OVE E 2/1962)

^{**)} PME 271Y447 is also approved by SEMKO to SEMKO 101 (IEC 65-1965) as a safety capacitor.

SPECIAL TECHNICAL FEATURES

Resonance frequency

Tabulated self-resonant frequencies for refer to 5 mm length of leads

Suppression

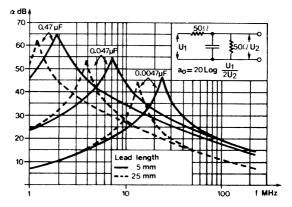


Fig 8. Suppression a versus frequency.

The self-inductance of the capacitors is mainly dependent on lead length. For best suppression at high frequencies the length of the leads should therefore be held to a minimum.

Humidity resistance

After a damp heat test to IEC No. 62-2-3, test Ca, severity 56 (56 days at $+40^{\circ}$ C and $90^{\circ}/_{\circ}$ to $95^{\circ}/_{\circ}$ R.H.) the insulation resistance is still above specified limits.

Bump test

IEC 68-2-29, test Eb. The capacitors, properly fixed, will withstand at least 4000 bumps with 390 m/s² retardation.

Vibration test

IEC 68-2-6, test Fc. The capacitors, properly fixed, frequency range 10-500 Hz, amplitude 0.75 mm or 10 g for 6 h.

Marking

Capacitors are marked with type identification, capacitance, rated voltage, temperature range, resonance frequency (fo), approvals, name of manufacturer and date of manufacture.

Mounting

Any normal method of soldering may be employed without the need for a heat sink.

In self-supporting assembly, bending of the terminals does not

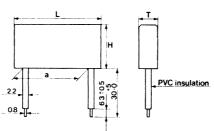
damage the capacitor.

Notes
<u></u>
<u></u>
<u></u>

PME 273 is a metallized paper capacitor for X applications. Metallized paper is a dielectric superior to metallized synthetic material with regard to pulse operation and self-healing performance. Capacitor element design for low inductance. Impregnated and encapsulated in non-inflammable epoxy resin. Additional humidity protection provided by embedded metal label. The capacitor will withstand the flame test prescribed by UL (Underwriters Laboratories Inc., USA) for across-the-linecapacitors. (UL 1414 paragraph 4.)

Parallel tinned copper PVC-insulated wires.

Rated voltage 250 V 50 Hz up to +85°C


IEC category 40/085/56

Temperature range — 40 to +85°C

Capacitance tolerance $\pm 20^{\circ}/_{\circ}$

Approvals SEMKO, NEMKO, DEMKO, Finland, VDE, SEV, ÖVE (see table).

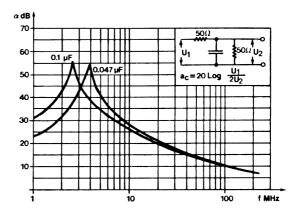
General technical data See page 111.

Lead length up to 70 mm can be offered on request.

STANDARD UNITS

Cap. "F	f o MHz	Dir L max.	т	ns in m . H . max.	а	Order Number	Approvals*)
0.01 0.015 0.022 0.033 0.047 0.068 0.1	7.5 6.3 5.3 4.1 3.5 2.8 2.3 2.3	19.0 19.0 18.5 18.5 18.5 24.0 24.0 24.0	7.3 7.8 7.8 7.8 7.8 7.6 9.0 7.6	13.5 13.5 14.0 14.0 14.0 14.5 16.0 14.5	10.5 10.5 10.5 10.5 10.5 16.0 16.0 16.0	PME 273M510 PME 273M515 PME 273M522 PME 273M533 PME 273M547 PME 273M568 PME 273M610 PME 273M8610	S N D EI VDE SEV ÖVE S VDE SEV

*) S =Sweden (SEN 43 29 01) VDE=Germany (VDE 0560/7) Ν =Norway (NEMKO 132/56) SEV = Switzerland (SEV 1017/1959) =Denmark D (DEMKO) ÖVE = Austria (OVE E 1/1962) =Finland (EI E20-71)



SPECIAL TECHNICAL FEATURES

Resonance frequency

Tabulated self-resonant frequency foo refers to 25 mm length of leads.

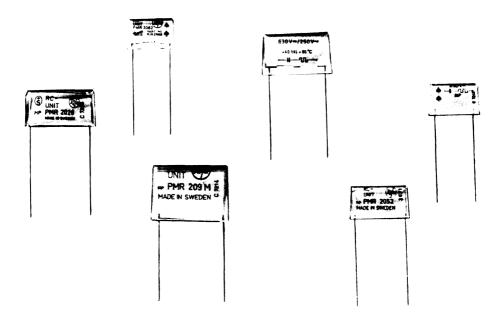
Suppression

Suppression ao versus frequency.

Humidity resistance

After a damp heat test to IEC No. 62-2-3, test Ca, severity 56 (56 days at $\pm 40^{\circ}$ C and 90° /₀ to 95° /₀ R.H.) the insulation resistance is still above specified limits.

Marking


Capacitors are marked with type identification, capacitance, rated voltage, temperature range, resonance frequency (fo), approvals, name of manufacturer and date of manufacture.

Mounting

See PME 271 page 164.

INTRODUCTION

The Rifa RC networks are designed for use in DC and AC applications for

- Contact protection
- Interference suppression of contacts
- Transient suppression for protection of low-power thyristors and triacs
- du/dt suppression in thyristor and triac low-power circuits

CONSTRUCTION

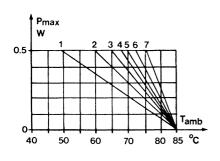
Rifa manufactures two types of RC units. One type consists of a metallized paper capacitor element in series with a carbon resistor (PMR 202). The other type consists of a metallized paper capacitor with the resistance in the metal layer utilized as the series resistance to the capacitor (PMR 205—209).

The RC units are encapsulated in epoxy resin with radial leads. The single moulded package makes a neat installation with only two solder joints. The form of the PMR RC unit makes it very suitable for insertion into printed circuit boards. Alternatively the unit may be mounted self-supporting.

SELF-HEALING

If a voltage surge punctures the dielectric, an arc occurs at the point of failure which melts the surrounding metal and insulates the area of the breakdown. Such breakdowns may occur thousands of times without appreciably effecting life or other properties of the RC networks. This self-healing property makes the RC network very resistant to high transient voltages.

WORKING VOLTAGE


The columns RATED VOLTAGE given in the type specifications indicate the maximum permissible DC and AC voltages for continuous operation within the category temperature range. The columns PEAK PULSE VOLTAGE indicate the maximum permissible pulse voltage.

CATEGORY TEMPERATURE RANGE

 -40° C to $+85^{\circ}$ C.

POWER RATINGS

The average losses may reach 0.5 W provided that a surface temperature of $+85^{\circ}\text{C}$ is not exceeded. The maximum allowable losses v ambient temperature are shown in figure below.

Dir	nensions (mn	n)	Curve
L	Т	Н	
18.5	5.2	10.5	1
19.0	7.3	13.0	2
18.5	7.8	13.5	2
20.0	8.3	15.0	3
23.5	7.6	13.5	3
24.0	7.6	14.0	3
24.0	9.0	15.5	4
27.5	8.5	15.0	4
23.5	11.3	16.5	5
24.0	11.3	16.5	5
27.5	11.5	16.5	6
27.5	15.5	21.5	7

Figure 1.

Maximum allowable power dissipation v ambient temperature and case size.

MARKING

Units are marked with type identification, capacitance, resistance, rated voltage, temperature range, manufacturer's name, date of manufacture and approvals.

MOUNTING

Any normal method of soldering may be employed without the need for a heat sink. For self-supporting assembly, bending of the terminals does not damage the capacitor.

HUMIDITY RESISTANCE

After a damp heat test according to IEC Publ. 68-2-3, test Ca, severity 56, the insulation resistance is still above specified limits.

SOLDERABILITY

Wetting time \leq 1 s when tested according to IEC 68-2-20, test T, solder globule method.

BUMP TEST

IEC 68-2-29, test Eb. The capacitors, properly fixed, will withstand at least 4000 bumps with 390 m/s² retardation.

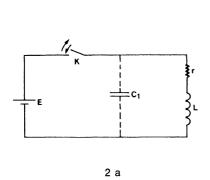
MINIMUM LIFE EXPECTANCY

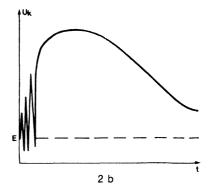
Under the worst conditions permissible, the minimum life expectancy is 200 000 000 relay operations.

APPLICATION OF RC UNITS

The use of a capacitor and resistor in series has long been known as a most effective means of increasing the life of contacts. At the same time radio interference suppression is achieved.

RC units are also very suitable as du/dt and transient suppressors on thyristors and triacs in low power applications, for example in dimmers and speed regulators.

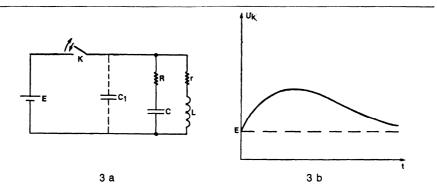

RC UNITS FOR CONTACT PROTECTION AND INTERFERENCE SUPPRESSION


Relay contacts that break and make a current circuit are subjected to electrical erosion resulting from sparking and arcing.

Spark suppressors used are RC units, non-linear resistors, shunt resistors, diodes and gas discharge valves. Amongst these devices the RC network is in most cases the best spark suppressor for the reduction of contact erosion. The advantages are:

- RC networks are non-polar and therefore suitable for AC applications.
- The relay operating time will not be very much affected.
- No current consumption.
- Radio interference suppression is achieved.

When the contact K (see figure 2 a) breaks, the voltage across the contact rapidly grows with the rate of $I/C_1(C_1)$ is the small capacitance of the wiring) resulting in a breakdown of K and a spark discharge of C_1 . The discharge stops when the voltage across K has



decreased to about 15 V. C₁ recharges and another breakdown occurs. This series of sparks stops when the contact clearance is long enough to endure the voltage without breakdowns (see figure 2 b).

By coupling a capacitor C over the contact (see figure 3 a) the voltage across the contact will be reduced and the voltage increase du/dt will be limited to I/C instead of I/C_1 . As I/C is much less than I/C_1 the voltage increase over the contact will now be low enough to prevent breakdowns (see figure 3 b).

In order to limit the current through the contact when it makes the resistor R must be coupled in series with the capacitor.

The values of the capacitor and the resistor depend on the inductance and resistance in the load, the applied voltage and type of contact (i.e. how exactly the contact breaks and makes and its current rating). The protective capacitance must be large enough to prevent the contact voltage from rising to a value greater than the air breakdown value at any instant. This value depends on the contact separation but is never less than 300 volts. With few exceptions, a 0.1 μ F capacitor will be large enough to hold the peak voltage to less than 300 volts.

Limiting the voltage rise across the contacts to less than 300 volts peak will not necessarily prevent all breakdowns of the gap. At the very first instant of contact breaking the contact separation is so minute that low-voltage breakdowns of the gap may occur. To minimize this possibility it is the practice to impose the additional requirement that the contact protection capacitor shall limit the rate of voltage rise immediately after the contact breaks to 1 volt per microsecond. This requirement will be met if the ratio I/C is less than unity where I is given in amperes and C is in microfarads. For slow moving contacts even larger capacitors are used.

With sufficient capacitance in the circuit for protection when the contact breaks, a resistor is needed for protection when the contact makes. The network capacitor is charged to the full voltage when the circuit is open. Closing the contacts effectively short-circuits this voltage, so a resistance is connected in series with the network capacitor to limit the current through the contact. The resistor thus reduces erosion as the contact makes, but also tends to increase it as the contact breaks. The sudden diversion of the steady-state current into the protection network on contact breaking immediately produces a voltage across the contacts due to the current flowing through the protection resistance. A compromise value is therefore necessary, and it is general practice to have a resistance that gives the same current through the contact on closure as the steady-state current.

The RC network can be connected across the contact or across the load. If there is a long wiring between the contact and the load, connecting the RC network across the contact is to be preferred.

At the same time as the contact is protected by the RC network, radio interference suppression is achieved as the sparks (which contain a high frequency spectrum) are avoided

RC UNITS AS DU/DT SUPPRESSORS ON THYRISTORS AND TRIACS

The junctions of any semiconductor exhibit some unavoidable capacitance. A changing voltage impressed on this junction capacitance results in a current, $i=C\ du/dt$. If this current is sufficiently large a regenerative action may occur causing the SCR to switch to the on-state. This regenerative action is similar to that which occurs when a gate current is injected.

High du/dt may occur from other thyristors switching-on or off or be due to reapplied du/dt. Consider the full-wave phase control circuit in figure 4, with an inductive load. When the current reaches zero (the triac commutates), (point A), the supply voltage (which is not zero) must then appear as a forward bias across the triac. The rate-of-change of this voltage is dependent on inductance and capacitance in the load circuit,

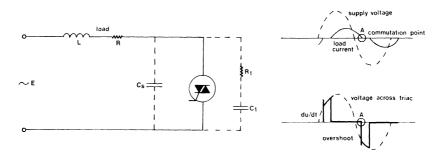


Figure 4

as well as on reverse recovery characteristics of the triac. The application of a series RC circuit in parallel with the triac or with the load, can reduce the du/dt to acceptable limits. The values of R and C are functions of the load, line voltage and triac used. Since circuit impedances for a particular application are not usually well known the values of C and R are often determined by experimental optimisation. For triacs 0.1 μ F+100 ohms are often used.

Rifa's RC units PMR 2026 and PMR 209 are well suited as du/dt protectors in low power circuits. As the tolerance of capacitance and resistance is not critical PMR 209 will offer satisfactory operation.

The maximum allowable power dissipation in the RC units is limited to 0.5 W. The calculation of the power dissipated in the RC-units when used as du/dt suppressors can be made as follows:

The energy in the capacitor is

$$E = \frac{1}{2}CU^2$$

where U is the voltage and C the capacitance.

Each time the thyristor goes from off-state to on-state this energy will be dissipated in the resistor. If the thyristor goes to on-state N times per second, the power dissipated in the resistor will be

$$P = \frac{1}{2}CU^2 \times N$$

A triac will be conducting each half-period when using a sinusoidal voltage. If the triac starts to conduct on the top of each half-period of 220 V 50 Hz voltage the power dissipated is

$$P = \frac{1}{2} \times C \times (220 \times V2)^2 \times 2 \times 50 = 5 \times 10^6 \times C$$

This power must not be more than 0.5 W.

$$0.5 \text{ W} \ge 5 \times 10^6 \times \text{C}$$

C $\le 0.1 \times 10^{.6} = 0.1 \mu\text{F}$

Furthermore, the case temperature must be limited to 85°C. Therefore, the maximum allowable power dissipation must be derated at higher temperatures. For maximum allowable power dissipation versus ambient temperature and case size see POWER RATINGS in the type specification.

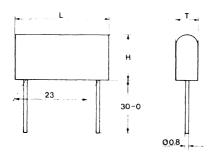
PMR 202

PMR 202 is a metallized paper capacitor in series with a carbon resistor. The unit is encapsulated in epoxy resin and has tinned copper wire leads.

Temperature range -40° C to $+85^{\circ}$ C

IEC category 40/085/56

Approvals PMR 2026 is approved as radio interference suppressors


class a (X) by SEV (SEV 1017/1959, Switzerland) for 630 VDC

and 250 VAC.

 $\pm\,10\%$ for C $\geq\,0.5~\mu F$ Capacitance tolerance

 $\pm 20^{\circ}$ for C $< 0.5 \mu F$

Resistance tolerance $\pm 10^{\circ}/_{\circ}$

Printed circuit version. Add A to code number. Example: PMR 2026A 0.5 + 22 Lead spacing 22.9 ± 0.5 mm

SPECIAL TECHNICAL FEATURES

The series resistance is defined as $R = \frac{\tan \delta}{\omega C}$ at 100 kHz. The Series resistance

resistance value so defined is very close to the value of the carbon resistor used and for all practical purposes constant

up to 1 MHz.

Capacitance The capacitance is measured at 1 kHz.

Current ratings The maximum current allowable is limited only by the rated

peak pulse voltage and the resistance value.

Power ratings The average losses may reach 0.5 W provided the surface

temperature does not exceed +85°C. For maximum allowable power dissipation v temperature see "Introduction" RC NET-

WORKS.

Insulation resistance PMR 2022: $> 500 \Omega F$

> PMR 2026: \geq 12 000 M Ω for C< 0.33 μ F \geq 4000 Ω F for C > 0.33 μ F

Measured with 100 volts DC (500 VDC for PMR 2026) at +20°C

after one minute of electrification.

STANDARD UNITS

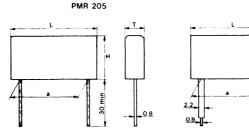
Cap.	Series Resistance	Rated Voltage	Peak Pulse	Max.	dimer	sions	Weight	Order Number³)
μF	Ohms	(AC for 40-60 Hz)	Voltage	L	т	н	g	Order Number y
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	22 33 47 68 82 100 150 220 330 470 680	200 VDC 125 VAC	300 V	27.5	8.5	15	5	PMR 2022/0.5+22 PMR 2022/0.5+33 PMR 2022/0.5+47 PMR 2022/0.5+68 PMR 2022/0.5+100 PMR 2022/0.5+150 PMR 2022/0.5+220 PMR 2022/0.5+330 PMR 2022/0.5+470 PMR 2022/0.5+680
1.0 1.0 1.0 1.0 1.0 1.0	22 33 47 68 100 150 220			27.5	11.5	16.5	7	PMR 2022/1.0+22 PMR 2022/1.0+33 PMR 2022/1.0+47 PMR 2022/1.0+68 PMR 2022/1.0+100 PMR 2022/1.0+150 PMR 2022/1.0+220
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	22 33 47 68 100 150 220 330 470			27.5	8.5	15	5	PMR 2026/0.1+22 PMR 2026/0.1+33 PMR 2026/0.1+47 PMR 2026/0.1+68 PMR 2026/0.1+150 PMR 2026/0.1+220 PMR 2026/0.1+330 PMR 2026/0.1+470
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	22 33 47 68 100 150 220 330 470	630 VDC 250 VAC	900 V	27.5	11.5	16.5	7	PMR 2026/0.25 + 22 PMR 2026/0.25 + 33 PMR 2026/0.25 + 47 PMR 2026/0.25 + 100 PMR 2026/0.25 + 150 PMR 2026/0.25 + 220 PMR 2026/0.25 + 330 PMR 2026/0.25 + 470
0.5 0.5 0.5 0.5 0.5 0.5	22 33 47 68 100 150 220			27.5	15.5	21.5	14	PMR 2026/0.5+22 PMR 2026/0.5+33 PMR 2026/0.5+47 PMR 2026/0.5+68 PMR 2026/0.5+150 PMR 2026/0.5+220

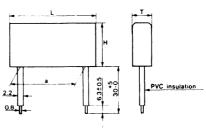
¹) Approved by SEV (SEV 1017/1959) for 630 VDC, 250 VAC.
²) For printed circuit version add A to code number. Example: PMR 2026A 0.5+33.

PMR 205, PMR 207

PMR 205 and PMR 207 are epoxy impregnated metallized paper capacitors with the resistance in the metal layer utilized as series resistance to the capacitance.

PMR 205 is encapsulated in an epoxy resin. Tinned copper clad steel leads.


PMR 207 is encapsulated in a self-extinguishing epoxy resin. PVC insulated tinned copper leads.


Temperature range —40°C to +85°C

IEC category 40/085/56

Capacitance tolerance $\pm 20^{\circ}/_{\circ}$

Resistance tolerance $\pm 30^{\circ}/_{\circ}$

PMR 207

SPECIAL TECHNICAL FEATURES

Series resistance The series resistance is defined as $R = \frac{\tan \delta}{\alpha C}$ at 1 kHz for

RC \geq 50 μ s and at 100 kHz for RC < 50 μ s.

Capacitance The capacitance is measured at 1 kHz.

Current ratings The maximum current allowable is limited only by the rated

peak pulse voltage and the resistance value.

Power ratings The average losses may reach 0.5 W provided the surface

temperature does not exceed +85°C. For maximum allowable power dissipation v temperature see "Introduction" RC NET-

WORKS.

Insulation resistance \geq 3000 M Ω for C \leq 0.33 μ F

> 1000 Ω F for C > 0.33 μ F

Measured with 100 VDC and at +20°C after one minute of

electrification.

STANDARD UNITS

Сар,	Series Resistance	Rated Voltage	Peak		Dimensions mm		Weight		
μF	Ohms	(AC for 40-60 Hz)	Pulse Voltage	L Max	T	H Max	a ±0.5	g	Order Number
PN	AR 205								
0.1 0.1 0.1 0.1	33 47 100 220			18.5	5.2	10.5	15.2	1.6	PMR 2052/0.1+33 PMR 2052/0.1+47 PMR 2052/0.1+100 PMR 2052/0.1+220
0.1 0.1	330 470			19.0 19.0		13.0 13.0		2.8 2.8	PMR 3052/0.1 + 330 PMR 2052/0.1 + 470
0.15 0.15	68 100								PMR 2052/0.15+68 PMR 2052/0.15+100
0.22 0.22 0.22 0.22 0.22	47 100 220 330 470			19.0	7.3	13.0	15.2	2.8	PMR 2052/0.22 + 47 PMR 2052/0.22 + 100 PMR 2052/0.22 + 220 PMR 2052/0.22 + 330 PMR 2052/0.22 + 470
0.25 0.25 0.25	200 350 600	250 VDC 125 VAC	375 V						PMR 2052/0.25 + 200 PMR 2052/0.25 + 350 PMR 2052/0.25 + 600
0.33	47			18.5	7.8	13.5	15.2	3	PMR 2052/0.33+47
0.47 0.47 0.47 0.47 0.47 0.47	33 47 100 220 270 330			24.0	7.6	14.0	20.3	4	PMR 2052/0.47 + 33 PMR 2052/0.47 + 47 PMR 2052/0.47 + 100 PMR 2052/0.47 + 220 PMR 2052/0.47 + 270 PMR 2052/0.47 + 330
0.47	470			24.0	9.0	14.0	20.3	5	PMR 2052/0.47+470
1.0 1.0 1.0 1.0	47 68 100 220 470			24.0	11.3	16.5	20.3	6	PMR 2052/1.0 + 47 PMR 2052/1.0 + 68 PMR 2052/1.0 + 100 PMR 2052/1.0 + 220 PMR 2052/1.0 + 470
0.25 0.25 0.25 0.25	1R 207 200 350 600	250 VDC 125 VAC	375 V	18.5	7.8	14.0	10	2.9	PMR 207HA625+200 PMR 207HA625+350 PMR 207HA625+600

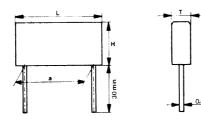
PMR 209 is an epoxy impregnated metallized paper capacitor with the resistance in the metal layer utilized as series resistance to the capacitance. The unit is encapsulated in epoxy resin and has tinned copper clad steel leads.

Rated voltage

Continuous 630 VDC

250 VAC 40-60 Hz

Transient peak Max 1000 V


Temperature range —40°C to +85°C

IEC category 40/085/56

Approvals VDE, SEV, NEMKO (see STANDARD UNITS)

Capacitance tolerance $\pm 20^{\circ}/_{\circ}$

Resistance tolerance ± 30%

SPECIAL TECHNICAL FEATURES

Series resistance is defined as R = $\frac{\tan \delta}{\omega C}$ at 100 kHz.

Capacitance The capacitance is measured at 1 kHz.

Current ratings Max. 12 A repetitive. Max. 20 A for occasional transients.

Power ratings The average losses may reach 0.5 W provided the surface

temperature does not exceed +85°C. For maximum allowable power dissipation v temperature see "INTRODUCTION" RC

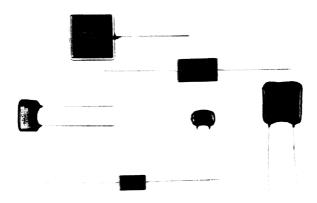
NETWORKS.

Insulation resistance \geq 3000 M Ω for C \leq 0.33 μ F

> 1000 Ω F for C > 0.33 μ F

Measured with 500 volts DC and at +20°C after one minute of

electrification.


STANDARD UNITS

Cap. μF	Series Resistance Ohms	Di L max		ns in n x H ma:	nm x ^a ±0.5	Weight g	Order number	Approvals*) as interference suppressors
0.047	47	19.0	7.3	13.0	15.2	2.7	PMR 209M547+47	SEV
0.047	100	19.0	7.3	13.0	15.2	2.7	PMR 209M547+100	SEV
0.1	47	24.0	7.6	14.0	20.3	3.6	PMR 209M610+47	SEV, VDE
0.1	100	24.0	7.6	14.0	20.3	3.6	PMR 209M610+100	SEV, VDE, N
0.22	47	24.0	11.3	16.5	20.3	6.1	PMR 209M622+47	SEV
0.22	100	24.0	11.3	16.5	20.3	6.1	PMR 209M622+100	SEV
0.47	47	30.5	15.3	22.0	25.4	14.5	PMR 209M647 + 47	SEV
0.47	100	30.5	15.3	22.0	25.4	14.5	PMR 209M647 + 100	SEV

^{*)} SEV = Switzerland (SEV 1017.1959) 250 $V\sim$ /630 V=VDE=Germany (VDE 0560-7) 250 V ~ N = Norway (NEMKO 132/56) 250 V ~ /630 V =

EL-MENCO MICA CAPACITORS

INTRODUCTION

The Electro Motive Manufacturing Co, who has been a pioneer in developing and manufacturing high quality mica dielectric capacitors "El-menco", is one of the biggest manufacturers of mica capacitors.

Dielectric

Mica is a natural inorganic material being mechanically extremely robust. Electric properties for El-Menco mica capacitors are high insulation resistance and very low dissipation factor even at very high temperatures, good dielectric constant, a low temperature coefficient T.C. and high long term capacitance stability. Normal values for T.C. is 0 to 70 ppm and cap.drift \pm (0.05%+0.1 pF).

Electrodes

Silver is applied to the mica sheets with a printing process and then all is heated in an oxidizing atmosphere to obtain a permanent bond.

Section

A number of mica films are stacked together. Contact with the silver electrodes is made either by tin-lead or silver foil strips. This section is then compressed and clinched tightly in the hot tinned lead and clamp assembly to assure positive contact.

Coating

Dipped type. The section is encased with a number of coats of a mineral filled phenolic compound which is then vacuum impregnated with an epoxy resin (W-process).

Molding

Molded type. For protection, the capacitor insert is molded in a mineral filled epoxy compound. The result is a rugged coating which protects the capacitor against shock and vibration and has an outstanding resistance to humidity.

Ordering data

DM15 CM15	E	D D	101 101	K K	0	4CR
Style	Charac.	Volt.	Сар.	Tol.	Temp. range	Coating

Style

Two letters and two numbers, where the letters indicate the type, dipped or molded, and the numbers indicate the shape and dimensions.

DM (earlier WDM) = dipped mica CM = MM = molded mica

"CM" is the military type designation and MM is the normal El-menco commercial type designation.

For molded types Rifa have chosen the CM-designation as standard in stock instead of MM-designation.

Characteristics

Four levels are specified

Letter Designa- tion	Temperature Coefficient	Capacitance Drift
С	±200P/106/°C	$\pm (0.5\% + 0.1 pF)$
D	± 100P/106/°C	$\pm (0.3\% + 0.1 pF)$
E	-20 to +100P/106/°C	$\pm (0.1\% + 0.1 pF)$
F	0 to +70P/106/°C	$\pm (0.05\% + 0.1 pF)$

In stock Rifa always keep the best available level.

Voltage

Y=50 VDC, A=100 VDC, C=3000 VDC, D=500 VDC

500 V or nearest below is chosen as standard in stock.

Capacitance

The nominal capacitance value is marked on the capacitor. For ordering purposes only a three-digit number is used where the first two digits represent significant figures and the last digit specifies the number of zeros to follow.

Chose European stock values on page 186.

Tolerance	Letter Designa- tion	Capacitance Tolerance*)	Letter Designa- tion	Capacitance Tolerance*)
	A	±1pF	Н	± 3°/o
	D	± 0.5pF	J	± 5%
	E	$\pm 1/2^{\circ}/_{\circ}$	K	± 10°/ ₀
	F	± 1º/o	M	± 20°/0
	G	± 2°/ ₀		

^{*)} For capacitance values of 100 pF or less, the minimum standard available tolerance is ±0.5pF.

Temperature range

The temperature letter designates the guaranteed temperature range over which the dipped mica capacitor may be successfully operated.

Letter Designa- tion	Temperature Range
O	—55 to +125°C
P	—55 to +150°C

[&]quot;O"-range is always standard.

Dipped coating

The dip-type can be coated in several different ways as

1CE, 1CRT, 1CHR, 4CR or 5CR.

The standard dip-type is **4CR**, four coats of phenolic resin and after that vacuum impregnation with epoxy resin. If nothing else is specified the capacitors will be delivered with 4CR.

Marking

All El-Menco capacitors are normally marked with capacitance value, capacitance tolerance in letters or percent numbers and the El-Menco identification.

For more detailed information we refer to pages 188—193 and the El-Menco Capacitors Condensed Catalogue.

Summary of advantages for El-Menco mica capacitors

- Mechanically robust capacitors
- Extremely high stability in temperature cycling and long term operation
- Favourable T.C. and capacitance drift characteristics
- Wide voltage range
- Wide temperature range
- Good availability from European stock

STANDARD UNITS

Any capacitance value within the values specified on pages 189 and 193 can be ordered.

A wide selection of standard units has been established as "European stock types" as follows.

Style **Dipped** DM 10, 15, 19 and 30 **Molded** CM 15, 20, 35

T.C. characteristic Always the best possible (see page 189 and 193).

Voltage 500 V (or nearest below)

Capacitance value $\,$ DM10 and 15 $\,$ < 10 pF $\,$: E 12 series

DM10, 15 and 19 > 10 pF : E 24 series DM30 \ge 2200 pF, \le 10 000 pF : E 12 series CM15 and 20 :> 10 pF : E 24 series CM35 \ge 3900 pF := 10 000 pF := E 12 series

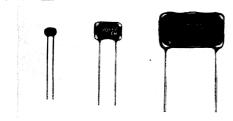
Tolerance Dipped (DM) 1% (0.5 pF) and 5%

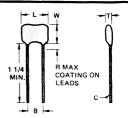
Molded (CM) 2% and 5%

Temperature range $"0"=-55 \text{ to } +125^{\circ}\text{C}$

Coating Dipped (DM) — 4 CR

Try first to specify "European stock types" because it gives advantage in availability and price.


EL-MENCO MICA CAPACITORS


Notes

DIPPED MICA CAPACITORS

El·Menco

CASE STYLES DM5 - DM10 - DM15 - DM16 DM19 - DM20 - DM30 - DM40 - DM42 - DM43

El-Menco dipped mica capacitors are fabricated from the finest India Ruby Muscovite Mica that is available. This particular form exhibits the best characteristics which may be obtained from mica and results in a capacitor with optimum high temperature characteristics and excellent stability.

The dipped mica capacitors are qualified to established reliability specification MIL-C-39001.

Mechanical Characteristics

1. Phenolic coating epoxy interegnated.

		L	EAD D	ETAILS			
CASE STYLE	B ±1/32	C ±.001	R MAX.	CASE STYLE	B ±1/32	C ±001	R MAX.
DM5	.120	.0159	5/64	DM20	7/16	.032	1/8
DM10	9/64	.0159	5/64	DM30	7/16	.040	1/8
DM15	15/64	.025	5/64	DM40	19/32	.040	1/8
DM16	1/2	.025	5/64	DM42	1-1/16	.040	1/8
DM19	11/32	.032	1/8	DM43	1-11/16	.040	1/8

Note: Crimped leads are available for all styles except for DM5.

DM5 and DM10 capacitors are marked with the capacitance value, capacitance tolerance letter and the El-Menco identification.

DM15 thru DM43 capacitors are marked with the capacitance value, capacitance tolerance in percent and the EI-Menco identification.

Electrical Characteristics

1. Operating temperature . . . -55° C to $+125^{\circ}$ C -55° C to $+150^{\circ}$ C

2. DC rated voltage 50, 100, 500: as indicated in size charts. Higher volt-

ages are available.

3. Capacitance range. 1 pF thru 159,000 pF: see

size chart for capacitance

range for each case style. 4. Capacitance tolerance. . . . $\pm 1/2\%$, $\pm 1\%$, $\pm 2\%$, $\pm 5\%$,

±10% and ±20%. Closer tolerances are available. For capacitance values of 100 pF or less, the minimum standard available tolerance is ±0.5 pF.

voltage 200% of rated voltage for

5 seconds.

6. Insulation resistance. 1000 megohms µF; need not exceed 100000 meg-

ohms.

7. Insulation resistance at elevated temperature See Figure 4

5. Dielectric withstanding

8. Dissipation factor \dots . See Figures 5 and 6

9. Temperature coefficient . . See Figures 1-3

El-Menco Catalog Number

	DM15	E	D	101	K	0	4CR
Prefix Letter	Style	Characteristic	Voltage	l Capacitance	Tolerance	Temperatur	e Coating
Prefix Letters		ging M2 - High		Tolerance		$K = \pm 10\%$ $E = \pm 1/2\%$	$M = \pm 20\%$ D = 0.5 pF
Style	Shape and d	limensions of the	е	Temperati	ure	$0 = -55^{\circ}C$ 1 P = $-55^{\circ}C$ 1	
Characteristic in PPM/°C		E =20 to +100 F = 0 to +70	0	Coating .		DM43 (need designation) 1CRH* - Or	ne heavy phenolic dip
DC Voltage	Y = 50 A D = 500	= 100 C = 300				epoxy impre 1CRT* - Or epoxy impre	ne thin phenolic dip
Capacitance	cant figures	o digits represen and the last digi nber of zeros to f	t speci-			1CE* - Epo: phenolic co	xy impregnated - no

CHARACTERISTIC VS CAPACITANCE

CASE	"c"	"D" AND "E"	"F"
STYLE	CAPACITANCE RANGE	CAPACITANCE RANGE	CAPACITANCE RANGE
DM5, DM10 DM15, DM16	1 pF THRU 19 pF	20 pF THRU 84 pF	85 pF AND GREATER
DM19, DM20	1 pF THRU 179 pF	180 pF THRU 429 pF	430 pF AND GREATER
DM30, DM40			470 pF AND GREATER
DM42, DM45			16000 pF AND GREATER

DM5 Standard Dip

CAPACITANCE	30	00 VC	С	1	00 V	С	50 VDC		
VALUE	L	w	T	L	w	т	٦	w	т
IN pF	M	AXIM	JM	м	AXIM	JM	M	AXIMU	M
1 - 12	270	.190	.110					•	
15	270	.190	.120			•			•
18 - 20	.270	.200	.120						
22 24	.270	.200	.120	.270	.190	.120		•	•
27	.270	.200	.130	.270	.190	.120			
30 - 33	.270	.200	.130	.270	200	.120			
36	.270	.210	.130	.270	.200	.120			
39	.270	.210	.130	270	.200	.120	.270	.190	.120
43	.270	.210	.140	.270	.200	.120	.270	.190	.120
47 - 51	.270	.210	.140	.270	.200	.130	270	.190	.120
56	270	220	.150	270	200	130	270	.190	120
62	.270	.220	.150	270	.210	.130	.270	.200	.120
68	.270	.220	.150	.270	.210	.140	.270	.200	.120
75 - 82	270	.230	.160	.270	210	.140	.270	200	.120
91	270	230	.170	.270	.210	.140	270	.200	.130
100 - 110	.270	240	180	.270	.220	.150	.270	.200	.130
- 120	.270	.250	.190	.270	.220	.160	.270	.200	.130
130	1		1	.270	.230	.160	.270	210	.130
150	1		1	.270	.230	.170	.270	.210	.140
160		1		270	.240	.170	270	210	140
170 - 180	1	1	1	270	.240	.180	.270	.210	.140
200	1	1	1	270	250	.190	.270	.220	.150
220		1	1			1	270	.220	.150
240	i	i	i	ì	i	ĺ	.270	.220	160
270	1	1	1		1		.270	230	.160
300	1	1		1		1	270	.230	.170
330 - 360		1			1	I	270	240	.180
390 - 400	1	ł			1	İ	.270	.250	190

DM10 4CR

CAPACITANCE	5	00 V	ЭС	30	00 VD	С	100 VDC		
VALUE	L	w	Т	٦	w	т	L	w	т
IN pF	M	AXIM	JM	м	AXIM	JM	м	AXIM	JM
1 - 24.	.360	:330	.190	•	•	•	•	•	•
27	.370	.330	.190	•	•	•	•	•	•
30 - 36	.370	.340	.190	•	٠	٠			•
39	.370	.340	.190	.370	.340	.190	360	.330	.190
43	.370	.340	.190	.370	.340	.190	.370	.330	.190
47 - 68	.370	.340	.190	.370	.340	.190	.370	.340	.190
75	.370	.340	.200	.370	.340	.190	.370	340	.190
82	370	.350	.200	.370	.340	.190	.370	340	.190
91 - 100	.370	.350	.200	.370	.350	.200	.370	.340	.190
110	380	350	200	370	.350	.200	370	340	.190
120	380	.350	200	.370	.350	.200	.370	340	.200
130	380	.360	.200	380	.350	.200	.370	.350	.200
150	.380	.360	.210	.380	.350	.200	.370	.350	.200
160	.380	.360	.210	.380	.360	.200	370	.350	.200
180	390	.370	.210	.380	.360	210	.380	350	200
200	390	370	.220	.380	360	.210	380	350	.200
220	.390	.370	220	.390	.370	.210	.380	360	.210
240 - 250	.390	.380	220	.390	.370	.220	.380	.360	.210
270				.390	.380	.220	.380	370	210
300				.390	.380	.220	.390	370	.210
330	ĺ			.400	390	230	.390	370	.220
360	1		1	.400	390	.230	390	.380	220
390 - 400	ĺ						.390	.380	.220
430 - 470		i					.400	.390	230

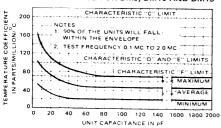
DM15 4CR

CAPACITANCE	5	00 V	С	30	00 VD	с	100 VDC		
VALUE	L	w	т	L	w	T	L	w	т
IN pF,	M	AXIM	JM	м	AXIM	JM	M	AXIM	M
1 - 62	.450	360	.170	•	•	•	٠	•	
75 - 82	450	.360	.180	٠.	•	٠			
91 - 100	460	.360	.180	٠	•	•			•
110 + 130	460	.070	.180	•	•	•		•	
150 - 180	.460	.370	.190	•	•	•			•
200	.460	.380	.190	•	•	•		٠.	•
229 - 240	460	.380	.200	٠.	•	•		•	•
270 - 390	.470	.390	210	•	•	•		•	•
430 :	.470	.390	.210	460	380	200			•
470 - 510	470	.400	220	460	380	200	٠.	٠	•
560 - 620	.480	410	230	460	380	200		•	•
680	.490	.420	.240	470	390	210		•	•
750 '	500	.430	.250	470	390	210		•	
820				470	390	.210	.470	390	210
910				.470	400	.220	470	.400	220
·1000			•	.480	.400	230	.480	.400	.230
1100				.490	.420	240	480	.400	.230
1200				.500	.430	250	490	420	.240
1300 - 1600							.500	.430	.250
							- 5	0 VD	С
1800							.480	.400	230
2000							.490	.420	.240

DM16 4CR

CAPACITANCE	5	00 V C	С	3	00 VC	С	1	00 VD	С
VALUE	L	w	7 -	L	w	т	L	w	Ť
IN pF	M	AXIM	JM	M	AXIMI	JM.	м	AXIMI	JM
100	.720	350	.180		•	٠	٠	•	•
110 - 180	720	360	180		•	•	•		٠
200 - 240	.730	360	190			•	•	•	•
270 - 300	.730	370	.190	•			•		٠
330 - 390	.730	370	.200		•		•	•	٠
430	.730	380	200	•	٠	•	•	•	
470 510	.740	.380	.210		٠				
560	.740	.390	.210	•	•	٠.		•	٠
620 - 680	750	.390	.220		•				•
750	.750	400	.230		•				٠
820 - 910]	1	.740	.390	210		٠	
1000 - 1100			1	750	.390	.220		٠	
1200 1300			l	.750	.400	.230		٠	•
1450		İ	ł	760	400	240			•
. 1500							.750	.400	.230
1600 1800							760	400	.240
2000		1			ļ		.770	.410	.250

DM19 4CR

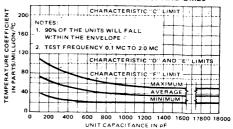

CAPACITANCE	,	00 V	DC	3	00 V	ос	100 VDC			
VALUE IN pF	L.	w	т	L	w	т	L	w	т	
IN pr	м	AXIM	UM -	N	MAXIMUM			MAXIMUM		
1 - 330	.640	.500	.190							
360 - 470	.640	510	200		٠					
510 - 620	.650	.510	200	•						
680 - 910	.650	.510	.210						•	
1000 1100	650	.520	220			١.				
1200 - 1300	660	.520	.220							
1500	.660	.520	.230					١.		
1600	660	.530	230		٠.			• .		
1800 - 2000	.670	.530	.240		•	•				
2200	670	.530	250		•	•			•	
2400	.670	.540	260	•			•			
2700	.680	.540	.270	•	٠			٠.	٠	
3000	.680	550	280	•		٠.	٠.			
3300	680	.550	.290	.670	.540	.260				
3600	.680	.560	.300	.680	.540	.270			•	
3900	.690	.560	.310	.680	.540	.270		١.	٠.	
4300	.690	570	330	.680	.550	.280		•		
4700	.700	.580	.350	.680	.550	.290	•	•	٠	
5100	710	.590	.370	.680	.550	.300	٠			
5600				.680	.560	.310	•	•	١.	
6200				.690	.560	.320	690	.560	.310	
6800				690	.570	.330	690	.570	320	
7500							.700	.570	.340	
8200							.700	.580	350	

DM30 4CR

CAPACITANCE		600 V	DC	3	00 V	oc	1	00 VI	DС
VALUE	L	w	T	L	w	T	L	w	7
IN pF	M	MAXIMUM MAXIMUM		UM	MAXIMUM		UM		
470 - 1000	760	840	.230		T -				Τ.
1100 - 2000	.770	.850	.240			•	١.		١.
2200 2700	.770	.850	250						١.
. 3000	.770	.860	250						
3300 - 3900	.770	.860	260	•					
4300 - 4700	780	860	270						
5100	.780	860	280						١.
5600 - 6200	.780	870	290						
6800	.780	870	.300						
7500	.790	.880	.310	780	860	.270			
8200	790	.880	320	780	860	280			
9100	790	880	.330	780	870	.280			
10000	800	.890	340	780	870	290		١.	١.
11000	.800	890	350	780	870	300			
12000	.800	890	360	.790	880	.310			
13000	810	890	370	.790	880	.310			
15000	810	900	390	790	880	.330			
16000	820	900	410	.800	890	340			
18000	820	.910	430	800	890	360			١.
20000	830	920	450	810	890	.370			
22000	840	930	480	810	900	.390	810	890	376
24000				820	900	410	810	900	380
27000	1 1			820	910	+30	810	900	400
30000				830	920	460	.820	910	420
33000						/*	830	910	440
36008							830	920	450
39006							830	920	470
40000	,						840	920	470

"NOTE: Where dimensions are not given for a particular capacitance value use dimensions for next greater voltage rating

FIGURE 1 — TYPICAL TEMPERATURE COEFFICIENT RANGE FOR DM5, DM10 AND DM15


DM20 4CR

CAPACITANCE	- 5	500 VDC			00 V	oc	1	00 VC	c	
VALUE IN pF	L	w	т	L	w	T	L	w.	т	
IN pr	MAXIMUM			N	MAXIMUM			MAXIMUM		
1 100	.750	.750 .500 .180								
200 - 620	.750	.500	.190							
750 - 1200	.750	510	.200			•				
1300 1600	.750	.510	.210							
1800 - 2200	760	.520	220			: •		•		
2400	.770	.530	.250				•			
2700	.770	.540	.260							
3000	.770	.540	.270							
3300	.780	550	.280							
3600	.780	550	290		٠.	٠				
3900	.780	.560	300							
4300	.780	.560	.310	.770	540	270				
4700	.790	.560	.320	.770	540	270	١.			
5100	.790	.570	.330	780	550	280				
5600	.790	.570	.340	780	550	.290		•		
6200	.790	.580	.350	780	560	.300	780	.550	290	
6800	.800	.590	.370	790	.560	.320	.780	560	300	
7500	.800	600	390	.790	.570	.330	780	560	.300	
8200	810	.610	.410	.790	.570	.340	.780	560	310	
9100	.810	.620	.430	.800	.580	.360	.790	.570	.330	
10000	.820	.630	.450	.800	.590	.370	.790	.570	.340	
11000				.800	.590	.380	790	.580	350	
12000 - 12300				810	.600	400	800	580	.360	
13000							800	590	.380	
15000			1				810	600	400	
16000							810	610	416	
18000			1				820	.620	.440	

DM40 4CR

CAPACITANCE	5	00 VE	С	3	00 V	oc.	1	00 V	С
VALUE	L	w	т	L	w	т	L	w	т
IN pF	м	AXIMI	JM	N	AXIM	UM	M	AXIM	UM
470 - 1100	.940	940 670 210		•	•		•		•
1200 - 1800	.950	.680	.220		•			•	•
2000 - 2700	.950	.680	.230		•			•	
3000 3300	.960	.690	.240	•	•		٠		
3600 - 3900	.960	.690	.250	٠					
4300 - 4700	.960	.690	.260		•		•		
5100 - 5600	970	.700	.270						
6200	.970	.700	.280			٠	٠.		•
6800	.970	.710	.290	١.	•	٠		•	•
7500	.980	.710	.300	.970	.700	.270		•	•
8200	.980	.710	.310	.970	.700	.280			
9100	.980	.720	.320	.970	.710	.290		٠	
10000	.990	.720	.330	.980	.710	.300			
11000	.990	.730	.340	.980	710	.310	•	•	
12000	1.000	.730	.350	.980	.720	.320			
13000	1 000	.740	.370	.990	720	.330			
15000	1 010	.750	.390	1 000	730	.350			
16000				1.000	.740	.370			
18000				1.010	.750	.390	•		
20000				1.020	.760	.410	•	٠	•
22000							1.000	740	370
24000							1 010	750	380
25000							1.010	750	.390

FIGURE 2 — TYPICAL TEMPERATURE COEFFICIENT RANGE FOR DM19 AND DM20

DM42 4CR

CAPACITANCE	5	00 V	oc ,	31	00 VD	C	100 VDC		
VALUE	L	w	T	L	w	T	L	w	т
IN pF	M	MAXIMUM :		MAXIMUM			MAXIMUM		
16000	1.410	1 410 870 280		•			•	•	•
18000	1.410	870	.290	•		. •.			•
20000	1.420	870	.300	•	,				•
22000	1.420	880	.310	1.420	.870	.290			•
24000	1.430	.880	.320	1.420	.870	.300			•
27000	1 430	.880	.330	1.420	.880	310	1.410	.870	.280
30000	1.440	.890	.350	1.430	.880	.320	1.410	.870	.290
33000	1.440	.890	.360	1.430	.880	.340	1.420	.870	.300
36000	1.450	900	.380	1.440	.890	.350	1.420	.880	.310
39000	1.450	900	.400	1.440	890	.360	1.430	.880	.320
43000	1 460	910	420	1.450	.900	.370	1.430	.880	.330
47000	1.470	910	450	1.450	.900	.390	1.430	.890	.340
51000	1.480	.920	470	1.460	.900	400	1.440	.890	.36
56000	1		1	1.460	.910	.420	1.440	.900	.371
62000	1		İ	1.470	.920	.450	1.450	.900	.390
68000	i			1.480	.920	.470	1.460	.900	.410
69000			l	1.480	.930	.480	1.460	.910	.426
75000	1		l				1.470	.910	.440
82000	1		1				1.480	.920	.460
91000			1				1.490	.930	.480
100000							1.500	.940	.490

DM43 4CR

CAPACITANCE	5	00 V	С	3	00 VC	С	10	0 V D	С	
VALUE	L	w-	T	L	w	Ť	L	w	T	
IN pF	M.	AXIM	JM	м	MAXIMUM			MAXIMUM		
24000	2.030	.870	300	•	•	•	•	•	•	
27000	2.040	.880	.310	٠ ا		٠	•	•	١.	
30000	2.040	.880	.320	2.030	.870	.290		•	٠	
33000	2.040	.880	.330	2.030	.870	.290		•	٠	
36000	2.040	.890	.340	2.030	.870	.300	•	•	٠	
39000	2.050	.890	.350	2.040	.880	.310	2.030	.870	.280	
43000	2.050	.890	.360	2.040	.880	.320	2.030	.870	.290	
47000	2.050	.900	.370	2.040	.880	.330	2.030	.870	.300	
51000	2.060	.900	.380	2.040	.880	.340	2.040	.880	.310	
56000	2.060	.900	.400	2.050	.890	.350	2.040	.880	320	
62000	2.070	.910	.420	2.050	.890	.360	2.040	.880	.330	
68000	2.070	.910	.440	2.050	.900	.370	2.040	.890	.340	
71000	2.070	.910	.450	2.060	.900	.380	2.050	.890	.350	
75000	1			2.060	.900	.380	2.050	.890	.360	
82000	1			2.060	.900	.400	2.060	.900	.380	
91000	1			2.070	.910	.420	2.060	.900	.400	
100000.	ì			2.070	.910	.440	2.070	.910	.420	
110000	1						2.070	.910	.440	
120000							2.080	.920	.460	
130000				į .	1		2.090	.930	.490	
140000							2.100	.940	.520	
150000							2.110	.950	.530	
159000							2.120	.960	.560	
			ı	1						

^{*}NOTE: Where dimensions are not given for a particular capacitance value, use dimensions for next greater voltage rating.

FIGURE 3
TYPICAL TEMPERATURE COEFFICIENT
RANGE FOR DM30, DM40 AND DM42

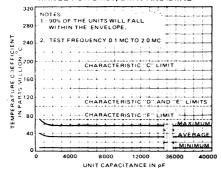


FIGURE 4
INSULATION RESISTANCE VS CAPACITANCE
REGULAR PRODUCTION

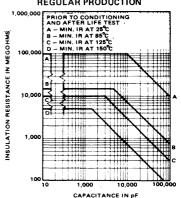
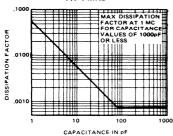
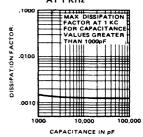
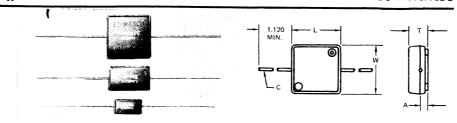


FIGURE 5
MAXIMUM DISSIPATION FACTOR
AT 1 MHz


FIGURE 6
MAXIMUM DISSIPATION FACTOR
AT 1 KHz

MOLDED MICA **CAPACITORS**

4-El·Menco

Case Styles MM15 - MM19 - MM20 - MM30 - MM35

El-Menco molded mica capacitors are fabricated from the finest India Ruby Muscovite Mica that is available. This particular form exhibits the best characteristics which may be obtained from mica and results in a capacitor with optimum high temperature characteristics and excellent stability.

The molded mica capacitors are qualified to fixed mica specification MIL-C-5.

Electrical Characteristics

1. Operating temperatures

MM15, MM19, MM20, MM30, MM35 -55°C to +85°C MM15, MM20, MM30.

> --55°C to +125°C -55°C to +150°C

2. DC rated voltage

100, 300, 500 Higher voltage available on request

3. Capacitance range 1pF thru 20000 pF. See chart for capacitance range for each case style.

4. Capacitance tolerance ±1/2%, ±1%, ±2%, ±5%,

±10%, ±20%. Closer tolerances are available. For capacitance values of 100 pF or less, the minimum standard available tolerance is ±0.5 pF.

5. Dielectric withstanding

voltage........ . 200% of rated voltage for 5 seconds.

6. Insulation resistance 1000 megohms µF. Need not exceed 100000 megohms at 25°C.

7. Insulation resistance at

elevated temperature. . . . See Figure 5.

8. Dissipation factor See Figure 6.

9. Temperature coefficient . . . See Figures 1-4.

Mechanical Characteristics

- 1. Case material: Molded with mineral filled epoxy compound.
- 2. Physical dimensions:

CASE STYLE	ξ. L ,	. w .	Т 🚕	Α	С
MM15	.520 ^{+.030}	.300838	•	.060 MIN.	.025 ^{±.002}
MM19	.688 MAX.	.438 MAX.	.219 MAX.		.032 [±] .002
MM20	.730 ^{±.060}	.440 ^{±.030}	.190 ^{± .030}	.060 MIN.	:032 ^{±.002}
MM30	.800030	.800 ^{+.060}	.250020	.080 MIN.	.040 ^{± .002}
MM35	.800030	800030 +.060	+.050 .310 ⁰³⁰	.080 MIN.	.040 [±] .002

^{*1} pF thru 220 pF .190 max., 300 pF and greater 220 max.

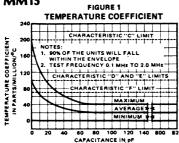
- 3. All capacitors are normally marked with the nominal capacitance value and tolerance.
- 4. Lead material: Copper Clad steel solder, coated

El-Menco Catalog Number

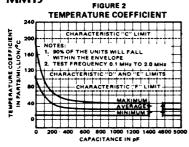
•	MM15	E	D	101	K	0
	 Style		 Voltage		l Toleranc	e
Prefix	Chai	acte	ristic (apacitan	ce	Temp.
Prefix L	etters		Use when the HR = Debutability con	igging :	VI2 = High	
Style			Shape and capacitor.			е
	eristic in		C = ±200 D = ±100)
DC Volt	age. ,		A = 100, C			
	ince		The first to cant figure ifies the nu	vo digit: s and th	s represen e last digi	t spec-
Tolerand	ce		$F = \pm 1\%$ $K = \pm 10\%$ $D = \pm 0.5 p$	$G = \pm 2$ $M = \pm 2$	% J=	±5%
Tempera	ature		$N = -55^{\circ}C$		°c	

 $O = -55^{\circ}C$ to $+125^{\circ}C$

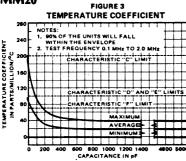
 $P = -55^{\circ}C \text{ to } +150^{\circ}C$


ELECTRO MOTIVE CORPORATION, WILLIMANTIC, CONN. 06226 Subsidiary of International Electronics Corporation

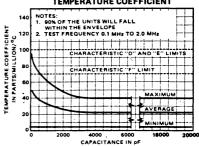
MM = CM (see page 186)


VOLTAGE, CHARACTERISTIC AND CAPACITANCE RANGE BY CASE STYLE

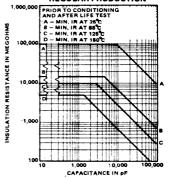
CASE	DC	RATED VOLTAG	E	CHARACTERISTIC				
STYLE	100	300	500	"C"	"D" & "E"	"F"		
MM15	1pF - 820pF	1pF - 620pF	1pF - 510pF	1pF - 19pF	20pF - 31pF	32pF & GREATER		
MM 19	1pF - 5000pF	1pF - 3600pF	1pF - 2400pF	1pF - 109pF	110pF - 199pF	200pF & GREATER		
MM20	1pF - 5100pF	1pF - 4300pF	1pF - 3300pF	1pF - 109pF	110pF - 199pF	200pF & GREATER		
MM30	470pF - 15000pF	470pF - 12000pF	470pF - 7500pF	_	_	470pF & GREATER		
MM35	3300pF - 20000pF	3300pF - 16000pF	3300pF - 11000pF	-	-	3300pF & GREATER		

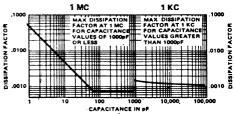


MM19



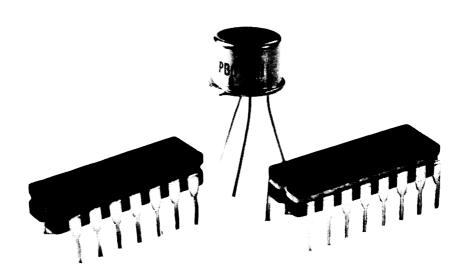
MM20


MM30 & MM35


FIGURE 5

INSULATION RESISTANCE VS CAPACITANCE REGULAR PRODUCTION

FIGURE 6


MAXIMUM DISSIPATION FACTOR

INTRODUCTION

Rifa's semiconductor program comprises bipolar monolithics, hybrids, resistor networks and diodes. Apart from the standard product range covered by this catalogue, there is considerable development and production of custom-designed circuits. The whole range has been developed with a view to servicing the tele-communications industry, and this aim has expressed itself in the form of a deliberate investment in the highest quality technology and design.

For ease of reference, the data on each circuit are grouped according to the headings discussed below.

KEY FEATURES

Key Features are the main properties of the component summarized for quick reference.

MAXIMUM RATINGS

Maximum Ratings are limits beyond which the serviceability of the component may be impaired.

ELECTRICAL CHARACTERISTICS

Values cited in the Type column under Electrical Characteristics are given for information only. The maximum and minimum values may be taken as references for acceptance testing.

FUNCTIONAL DESCRIPTION

In Functional Description the internal design of the circuit is described.

TYPICAL APPLICATION

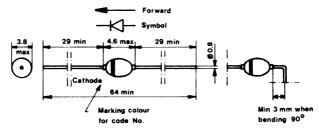
Typical application gives an example of practical circuit connections and the resulting performance.

Notes

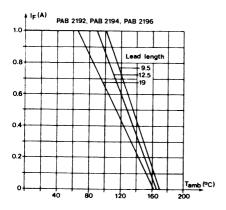
GENERAL DESCRIPTION

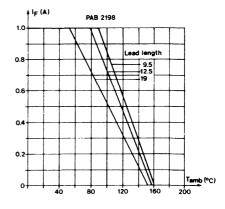
This one ampere rectifier is axial-leaded and has hermetically sealed glass package. The rectifier has heat-sink construction and the structure is all diffused. The surface is glass passivated and the leads are dip tinned. Weight with leads 0.3 g.

Marking


The rectifier is marked at the cathode side with the colour according to the table below. **Note** At temperatures above +125°C the protective lacquer layer can be discoloured.

Code No.	Marking	Reverse Voltage U_R , U_{RR}	Units
PAB 2192	red	200	V
PAB 2194	yellow	400	v
PAB 2196	blue	600	V
PAB 2198	arev	800	V


Ordering number


Code No. are according to the table above.

Dimensions

Maximum average forward current at resistive or inductive load as a function of ambient temperature and lead length. The thermal impedance tie-point to ambient is considered to be 40° C/W for each lead.

Maximum ratings

Reverse voltage, DC, U_R and working peak U_{RR} at junction temperature -65°C to $+175^{\circ}$ C, (+165°C for PAB 2198).

Forward Current, Average at Resistive and

Inductive Load (see curves)

Peak Surge Forward Current, No load T_A=25°C, half sine wave, non repetitive

Peak Reverse Power Rating, 20 us half sine wave, non repetitive, at max. T_J

Avalanche Voltage

12t RMS for fusing, 1 to 10 ms

Storage and Junction Operating Temperature

Soldering Temperature (3 mm from body max. 5 sec.)

Mounting: Any position

 $T_A = 100^{\circ}C$ $I_F = 1$ A

 $(T_A = 90^{\circ}C \text{ for PAB 2198})$

0.001 s I_F surge 100 A 0.0083 s I_F surge 65 A

1000 W

max. 1600 V

4 A2s

--65°C to +175°C

(+165°C for PAB 2198)

< 290°C

ELECTRICAL CHARACTERISTICS

Forward Voltage drop at I_F, 1 A

Reverse Current at U_R T_J 25°C U_F max 1 V T_J 25°C I_R max 5 μA

T_J 175°C max 0.3 mA for PAB 2192 T₁ 175°C max 0.3 mA for PAB 2194 T_J 175°C max 0.2 mA for PAB 2196 T₁ 165°C max 0.2 mA for PAB 2198

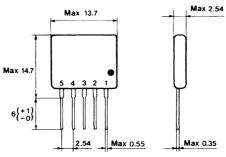
Reverse Recovery Time

 $T_{RR} = max 6 \mu s$

EQUIVALENT TYPES

RIFA type No. Corresponding type No. PAB 2192 1N 5059 PAB 2194 1N 5060

1N 5061 PAB 2196 1N 5062 PAB 2198


GENERAL DESCRIPTION

The Rifa cermet hybrid circuits PBA 3008 and PBA 3009 are primarily designed for timing control at turn-off and turn-on of relays, lamps, small electromagnetic coils etc. These versatile devices are also suitable for other applications such as driving, filtering and interfacing TTL logic to relay systems. The most characteristic features are high output driving capability and wide timing and voltage ratios. The output sink current is 150 mA and the operating voltage 4.75 — 30 V. The timing circuits operate from 1 ms to several minutes. The circuits are provided with Schmitt-trigger inputs.

Encapsulation

Single-In-Line (SIL) epoxy dip coated.

PHYSICAL DIMENSIONS

Ordering instructions

Rifa Type No.	Function	Encapsulation
PBA 3008	Delayed turn-off	RIPAK D5
PBA 3009	Delayed turn-on	RIPAK D5

Maximum ratings

Supply voltage (V_{CC})

Input voltage pin 2

Output voltage

Output current, V_{CC}=max

Input current pin 1 (continuous)

Storage temperature range

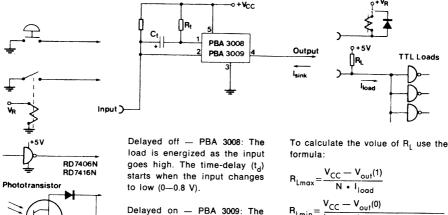
Storage temperature range -40° C to $+85^{\circ}$ C Operating temperature range 0° C to $+70^{\circ}$ C

Lead temperature (soldering 10 sec.) 260°C

Power

Dissipation at 25°C ambient temperature $P_D=350$ mW Dissipation at 70°C ambient temperature $P_D=190$ mW

CHARACTERISTICAL DATA T_{amb} 25°C, V_{CC} = 12 V, R_a = 1 k unless otherwise noted

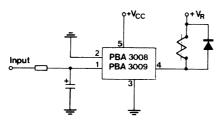

Symbol	Parameter	Test condition	Min	Тур	Max	Units
V _{out} (sat)	Collector-Emitter Voltage	I _{sink} =150 mA V _{CC} =10—25 V		0.4	0.6	٧
Vin	Trip Voltage pin 1	SIIIK CC		1.5		V
v'''	Hysteresis pin 1			0.2		٧
V _{in} (0)	Input Voltage Low pin 2		0.7			V
I _{in} (0)	Leakage Current pin 1	V _{in} pin 1=-10 V			1	μΑ
I _{in} (1)	Switching Current pin 1	in.			10	μΑ
Ŕ <mark>,</mark>	Timing Resistor		10		2200	kΩ
tď	Time Delay					
ŭ	t _d =k • R _t • C _t (Note)					
k	t _d (Note)	V _{CC} =5 V		0.9		
	R _t • C _t	V _{CC} =12 V		0.8		
		V _{CC} =12 V V _{CC} =30 V		0.7		
t _p	Preset time			450		μs/μF

Note Expression valid for moderate time delays (R $_{\rm t} \geq$ 50 kQ).

PBA 3008, PBA 3009

Application examples of driving PBA 3008 and PBA 3009 from different sources when driving different loads

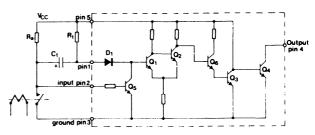
time-delay (t_d) starts as the input goes low. At the end of the time-delay the output is energized and remains in this state as long as the input is low.

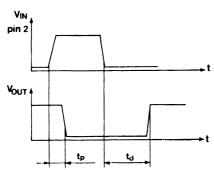

$$R_{Lmax} = \frac{V_{CC} - V_{out}(1)}{N \cdot I_{load}}$$

$$R_{Lmin} = \frac{V_{CC} - V_{out}(0)}{I_{sink} - I_{sink} \text{ from TTL loads}}$$
eg. 3 TTL loads will give
$$33\Omega < R_{L} < 20 \text{ k}\Omega$$
Note: $V_{col}(1) \text{ min = 2.4 V}$

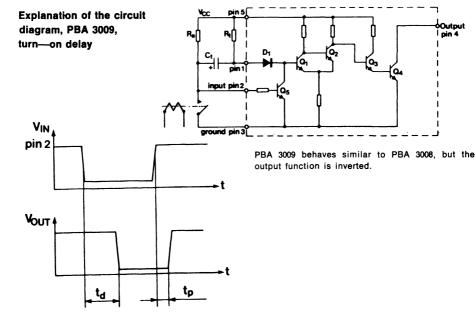
Note: $V_{out}(1) \min = 2.4 \text{ V}$ $V_{out}(0) \max = 0.4 \text{ V}$

Noise suppressor


2N5779

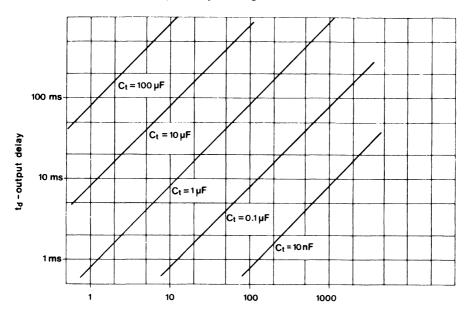


The Schmitt-trigger feature can be utilized when using the PBA 3008/PBA 3009 as a noise suppressor.


Explanation of the circuit diagram, PBA 3008, turn-off delay

The circuit turns on i.e. the output transistor Q4 saturates, when the input pin 2 goes high. The preset time, t_p , is dependent upon the charging time of the capacitor C_1 via R_a , D_1 and Q_5 . At V_{CC} =12 V and R_{α} =1 k the input voltage, pin 2, is about 11.4 V and the voltage on pin 1 is about 1.5 V.

When the input is grounded the voltage on pin 1 immediately falls to approx. minus 10 V. The capacitor C, now starts to recharge exponentially with the time constant $T=R_{t} \cdot C_{t}$. When the voltage on pin 2 reaches plus 1.5 V Q1 saturates and the output pin 4 goes high for PBA 3008 and low for PBA 3009.



l ain 4

TYPICAL CHARACTERISTICS

Output delay v timing resistor value

 R_t - timing resistor value - $k\Omega$

Notes	
	••

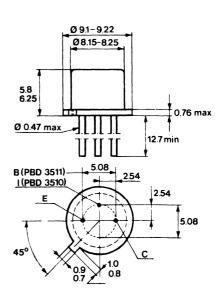
RIFA

GENERAL DESCRIPTION

The PBD 3510 and PBD 3511 are monolithic digital integrated circuits especially designed to interface DTL/TTL logic into high current, e.g. relays, electromagnetic valves, solenoids etc. They may also be used to drive resistive loads.

Both of them are manufactured in a high voltage process, giving extremely high breakdown values for the transistors which are integral parts of the circuits.

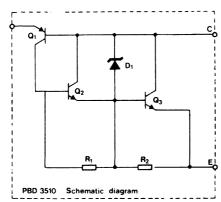
PBD 3511 is a current-controlled Darlington transistor with two levels on the output; driving or non-driving. The greatest advantage of the circuit is its ability to dissipate the load energy at turn-off. An integrated zenerdiode allows the voltage to rise to approximately 110 V over the output transistor when turning off the load current. This is done very quickly (0.2—0.5 ms). The energy is dissipated without any need for a protecting diode or RC network across the load because the breakdown value of the zenerdiode is at least 30 V lower than the corresponding values for all transistors. This prevents the transistors from going into a breakdown condition. However, at inductive loads, with the current exceeding 125 mA, an external protecting diode is recommended.

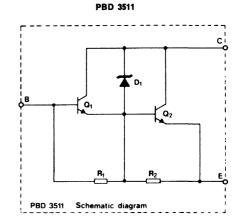

PBD 3510 operates in the same way as PBD 3511. The difference between them is that PBD 3510 has a PNP transistor at the input which gives level-shift so that the circuit can drive loads where positive ground is used.

Mechanical data

The collector is connected to the case.
All JEDEC TO-39 dimensions are applicable.
All dimensions in mm unless otherwise specified.

Ordering instructions


Ordering manuchons						
Rifa Type No.	Application	Encapsulation				
PBD 3510	Load positive grounded	TO-39				
PBD 3511	Load negative grounded	TO-39				



Schematic diagrams

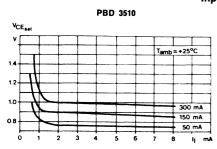
PBD 3510

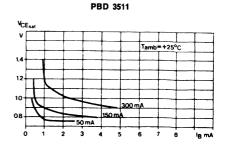
Maximum ratings	PBD 3510	PBD 3511
Voltage and currents		
Relay voltage (V _R)	85 V	+85 V
Load current (I _C)	300	mA
Current at inductive load		
without external clamp diode (I _C)	125	mA
Input current (I _I)	15 mA (typ	o. 0.9 mA)
Inductive load without external clamp diode	2	Н
Power		
Dissipation at 25°C case temperature (Note 1) (P _d)	3.8	W
Dissipation at 25°C case ambient temperature (Note 2) (P _d)	0.7	W
Temperature		
Storage temperature (T _S)	—55°C to	+150°C
Operating junction temperature (T _J)	+ 15	0°C
Lead temperature (soldering 10 s time limit) (T _L)	+26	o°C

Note 1 Derate linearly to 150°C case temperature at the rate of 30.4 mW/°C. Note 2 Derate linearly to 150°C free air temperature at the rate of 5.6 mW/°C.

ELECTRICAL CHARACTERISTICS (25°C ambient temperature unless otherwise noted)

PBD 3510


Symbol	Parameter	Test Condition	Тур	Max	Unit
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_1 = 1.2 \text{ mA}, I_C = 10 \text{ mA}$	0.8	1.3	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_1 = 1.4 \text{ mA}, I_C = 50 \text{ mA}$	0.9	1.4	٧
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_1 = 1.6 \text{ mA}, I_C = 250 \text{ mA}$	1.0	1.5	V
I _{CEO}	Leakage Current	V _{CF} =70 V		50	μA
V _{IC}	Input Saturation Voltage	$I_C = 100 \text{ mA}, I_L = 1 \text{ mA}$	0.8	1.0	v
V _{IC} V _{IC}	Input Saturation Voltage	$I_{C} = 100 \text{ mA}, I_{I} = 5 \text{ mA}$	0.9	1.1	٧


PBD 3511

Symbol	Parameter	Test Condition	Тур	Max	Unit
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _B =0.9 mA, I _C =10 mA	0.8	1.3	٧
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_B=1.1$ mA, $I_C=50$ mA	0.9	1.4	V
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_B = 1.3 \text{ mA}, I_C = 250 \text{ mA}$	1.0	1.5	٧
I _{CEO}	Leakage Current	V _{CF} =70 V		50	μΑ
V _{BE}	Input Saturation Voltage	$I_C = 100 \text{ mA}, I_R = 1 \text{ mA}$	1.35	1.55	٠̈٧
V _{BE}	Input Saturation Voltage	$I_C = 100 \text{ mA}, I_B = 100 \text{ mA}$	1.4	1.6	V

TYPICAL CHARACTERISTICS

Collector-Emitter Saturation Voltage versus Input Current

TYPICAL CHARACTERISTICS

Collector—Emitter Saturation Voltage versus Input Current

PBD 3510

VCE_{sat}

V

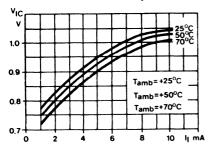
14

12

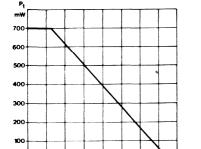
10

08

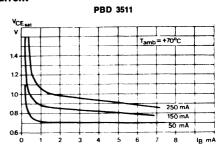
150 mA


50 mA

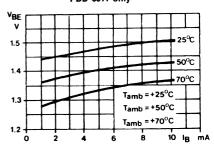
60

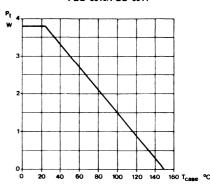

1 2 3 4 5 6 7 8 I_I mA

Input-Collector Voltage versus Input Current


PBD 3510 only

Typical derating curve for the power dissipation versus the ambient temperature PBD 3510/PBD 3511


100 120


Base-Emitter Voltage versus

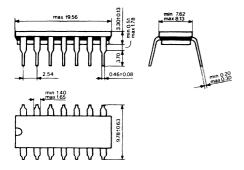
Base Current

PBD 3511 only

Typical derating curve for the power dissipation versus the case temperature PBD 3510/PBD 3511

GENERAL DESCRIPTION

RIFA BPD 3513 is a monolithic dual driver circuit. It comprises two independent 12 V drivers on the same chip. The 3 input AND inputs are specially designed to be DTL/TTL compatible, and they can also be fed from relay contacts in 12 V systems.


The output current can be chosen according to demand thus avoiding waste of power. Integrated zenerdiodes proctect the outputs against transient voltages. This means that no external protective device (freewheel diods or RC networks) are required.

Key features

- All specifications given for T_A=70°C.
- Excellent driving capability.
 Continuous current sinking capability of 300 mA per stage. Continuous power dissipation capability of 800 mW for the whole package.
- Integrated transient protection on the outputs.
- Inputs directly DTL/TTL compatible.
 Inputs directly compatible to newer CMOS families.
- Expandable Dual 3 AND inputs.
- Output current adjustable according to demand.
- Small dimensions. 14 pin DIL ceramic package.

Mechanical data

14 pin Dual-In-Line (DIL) ceramic package TO-116.

Order information

RIFA Order No.	Function	Encapsulation
PBD 3513	Dual 3 AND Driver	Ceramic DIL 14 pin

Maximum ratings

VOLTAGES AND CURRENTS

Supply voltage, pin 14 V_{CC} 20 V Input voltage V_{IN} 20 V

Output current continuous I_{OUT cont} 300 mA per stage

Output current peak I_{OUT peak} 400 mA per stage

POWER

Continuous total power dissipation 800 mW

at T_A 70°C

TEMPERATURE RANGE

Operating temperature range 0 to $+70^{\circ}$ C

Storage temperature range —55°C to +150°C

Soldering temperature (max 10 s) +300°C

ELECTRICAL CHARACTERISTICS

(at T_A 0—70°C and V_{CC} 4.75 to 5.25 V unless otherwise specified).

Input characteristics are valid only for inputs A_1 , A_2 , B_1 , B_2 and C_1 , C_2 . However, these characteristics are applicable to inputs E_1 , E_2 too provided small signal diodes (e.g. 1N4148) are used.

Symbol	Parameter	Test condtions	Ref. fig.	Min	Тур	Max	Units
v _{CL}	Input clamping voltage	T _A = +25°C I _{IN} = -12 mA	1.4	—1.5	—1		٧
V _{IH}	Logical H input voltage		1.4	2.0			V
\mathbf{v}_{ii}^{ii}	Logical L input voltage		1.4			0.80	V
V _{OH}	Logical H output voltage at	I _{SINK} =100 ,"A	1.4	20			V
U	switch-off of inductive loads	I _{SINK} = 300 mA			23	25	V
V_{OL}	Logical L output voltage	$I_D = 4 \text{ mA } I_{OUT} = 50 \text{ mA}$	1.4		120	400	mV
OL.		$I_D = 19 \text{ mA } I_{OUT} = 300 \text{ mA}$ $(R_{VCC} - D = 270\Omega)$			500	700	mV
I _{IH}	Logical H input current	V _{1H} =20 V	1.4			40	μA
T _{IL}	Logical L input current	V ₁₁ =0.4 V	1.4	250	100		μA
ICCH	Supply current, high outputs	V _{CC} =20 V	1.4		3.4	4.5	mΑ
ICCL	Supply current, low outputs	V _{CC} =20 V	1.4		42	57	mΑ
	•	V _{CC} =5 V			9	12	mΑ
t _{rise}	Output voltage rise time	$R_{V_{CC}-D} = 270\Omega$	1.4			150	ns
t _{fall}	Output voltage fall time	$R_L = 40\Omega \ V_{RR} = 12 \ V$ $R_{V_{CC} \cdot D} = 270\Omega$	1.4			250	ns
	Propagation delay from	$R_{L} = 40\Omega \ V_{RR} = 12 \ V$ $R_{V,CC} = D = 270\Omega$	1.4			500	ns
	input A, B and C or with external diode 1N4148	$R_L = 40\Omega V_{RR} = 12 V$					

Functional description

Each section of this driver may be operated individually or in parallel.

Different methods of operation are shown on the next page.

Logic function

When all inputs A, B, C and E are high, the output Y is low and hence the driver will sink current (activate the load).

The inputs A_1 , B_1 , C_1 are DTL/TTL compatible and the expander E_1 must have a serial input diode (e.g. 1N4148). Newer designs of CMOS are useable for direct drive of PBD 3513.

Electrical function and output current control

The base drive current of the output transistor is limited by means of an integrated 1 kohm resistor between V_{CC} and the collector of transistor Q_2 , thus enabling the output transistor to sink maximum 50 mA at V_{CC} =5 V.

If 50 mA is insufficent the base drive current could be increased with an external resistor between V_{CC} and pin D_1 . The base drive current must exceed $I_{OUT}/20$ and the saturation voltage on pin D_1 could be estimated at 2 V.

Example:

An output current of 225 mA is required at $V_{CC} = 5 \text{ V} \frac{225}{20} = 0.011 \text{ A}$. Internal resistor will

supply 3 mA. External resistor value will be $\frac{5-2}{0.011-0.003}$ ohms =375 ohms to V_{CC}=5 V. Nearest E24 standard value 360 ohms may be used.

At $V_{CC} = 12$ V the driver will sink $\frac{10}{1.2}$ 20 = 165 mA without continuous drive.

Switch-off transients from inductive loads are handled by the integrated zenerdiode D₇. No external freewheel diodes or RC networks are required across the load provided the load inductance does not exceed 250 mH at 300 mA or 2 H at 100 mA.

All information regarding section 1 is fully applicable to section 2.

Schematic and connection diagrams

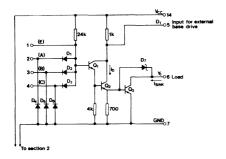


Figure 1

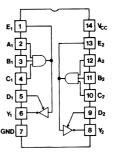
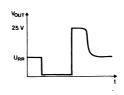


Figure 2


Function table

	inputs')				
A	В	С	E	Y	
0	x	x	x	н	
X	0	X	X	н	
X	X	0	X	н	
X	X	X	X	Н	
н	н	н	Н	L	

X=Irrelevant

Figure 3

Typical wave form, output voltage and current

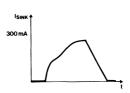
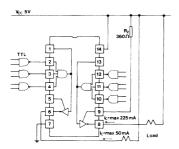
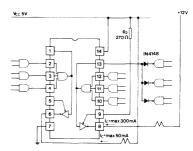




Figure 4

¹⁾ Each section of the driver operates independently of the other. However, the driver sections may be paralleled in order to increase load capability.

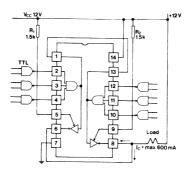

PBD 3513 controlled by TTL gates and driving two separate loads with individual current values. Section two has external base drive supply through resistor R2=360 ohms.

Figure 5

PBD 3513. Section 1 controlled by 3 TTL gates and driving a 50 mA load.

Section 2 controlled by 3+33 (via expander) TTL gates and driving a 300 mA load connected to a separate RV supply. The external base drive supplied through resistor R2=270 ohms.

Figure 6

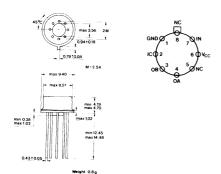
PBD 3513 operated at 12 V as a 6 input AND 600 mA 12 V driver controlled by TTL gates .The load is driven parallel by sections 1 and 2 and the sections have individual base drive through resistors R1 and R2.

Note Input current at one low input will be twice the specified value.

Figure 7

Notes

GENERAL DESCRIPTION


RIFA PBD 3520 is a high voltage monolithic driver circuit with open collector/emitter output in metal TO-99 package. The input is TTL compatible and the circuit is designed for 5 V supply voltage. The output is capable of sinking 150 mA continuously at load voltages down to —56 V. Logical "L" at input activates the output to sink current.

The load can be connected either between ground and the Darlington output transistor or between the Darlington transistor and the negative supply.

Key features

- ◆ All specifications given for T_A=70°C
- Open collector/emitter output
- High loading current
- High loading voltage
- Low control current
- Inputs TTL compatible

Mechanical data

NC=Not connected

IC =Internal connection must not be connected externally

All JEDEC TO-99 dimensions are applicable. All dimensions in mm unless otherwise specified.

Order information

RIFA Order No.	Function	Encapsulation
PBD 3520	Open collector/ emitter output	Metall TO-99 package

Maximum ratings

Output voltage differential V_{OA}, V_{OB} 65 V Output current continuous 200 mA

POWER

Dissipation at T_C 25°C 3.8 W

Derate linearly to 150 $^{\circ}\text{C}$ case temperature

at the rate of 30.4 mW/ $^{\circ}$ C Dissipation at T_A 25 $^{\circ}$ C 0.8 W

Derate linearly to 150°C free air temperature at the rate of 6.4 mW/°C.

TEMPERATURE RANGE

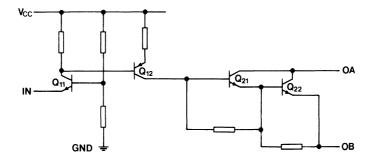
Storage temperature T_s —55°C to +150°C

Operating junction temperature T_i +150°C Lead temperature (soldering 10 s) T_L 260°C

ELECTRICAL CHARACTERISTICS

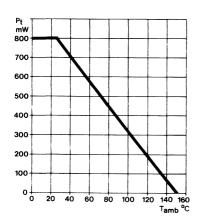
(Temperature range 0 to 70°C, 4.75 \leq V_{CC} \leq 5.25 V, V_{OA} \leq 0.4 V)

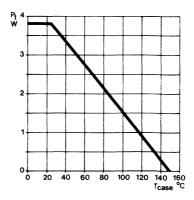
Symbol	Parameter	Test conditions	Min	Тур	Max	Units
v _{IH}	Logical "H" input voltage		2			٧
v _{il}	Logical "L" input voltage				0.80	٧
I _{IH}	Logical "H" input current	$V_{1N} = 2.4 \text{ V}$			40	μΑ
	Logical "L" input current	V _{IN} =0.4 V	-1.6	0.8		mΑ
I _{IL} V _{sat}	Output saturation voltage	V _{IN} =V _{II} , I _{OA} =150 mA		0.9	1.3	٧
-l _{OB}	Output leakage current	$V_{IN} = V_{IH}, V_{OA} = 0.4 V, V_{OB} = -56 V$			30	μΑ
Icc	Supply current	V _{IN} =2.0 V		0.3	0.8	mΑ
lcc	Supply current	V _{IN} =0.0 V, V _{OB} =-56 V		2.5	3.5	mA



Functional description

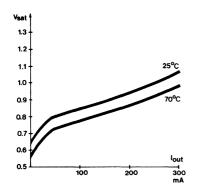
A voltage divider, giving 2.2 V at 5 V supply voltage is connected to the base of transistor Q_{11} . When the input voltage is lower than 1.5 V, Q_{11} starts conducting, thus activing current generatur Q_{12} . This will cause the Darlington output transistor pair Q_{21} and Q_{22} to saturate.

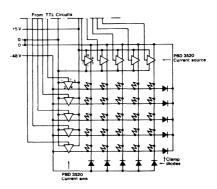

The load can be connected between ground and output A with output B to the negative supply with output A to ground.


When PBD 3520 drives inductive loads, the switchoff transients must be suppressed by means of an external transient protector (e.g. clamping diode or RC network).

Derating curve for the power dissipation versus the ambient temperature

Derating curve for the power dissipation versus the case temperature




Typical characteristics

Collector-Emitter output saturation voltage versus output current

Typical application

PBD 3520 as an interface between TTL and a relay matrix. The TTL circuits drive PBD 3520 directly. Clamping diodes are needed at switch-off. Note that logic earth may differ from relay earth.

PBD 3523

GENERAL DESCRIPTION

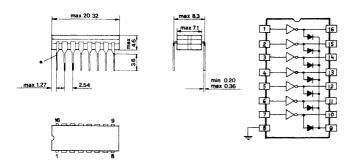
RIFA PBD 3523 series monolithic driving circuits are comprised of seven darlington stages per package, capable of sinking 500 mA continuously. Alternatively the total package can dissipate maximum 800 mW continuously. All outputs have integrated suppression diodes to handle transients from inductive loads. The inputs have the following features.

PBD 352301 has no serial input resistors. This driver may be fed direct from a current source. Alternatively an external resistor enables free choice of control voltage.

PBD 352302 has 14 kohms resistors in series with each input in order to limit the input current when driving direct from high voltage sources. (HTL/HHL/LSI, MOS, CMOS, operating with higher V_{CC} , V_{SS} , V_{DD}).

PBD 352303 has 2.5 kohms resistors in series with each input in order to limit the input current when driving direct from medium voltage sources. (CMOS operating at lower V_{DD} or DTL, TTL).

PBD 352304 has a zenerdiode input for increased noise immunity. (Compatible with HTL/HLL/LSI).


For increased current sinking capability the individual darlington stages of one package may be paralleled.

Key features

- Excellent driving capability for lamps, relays, printers, electromagnetic valves, clutches etc. Current sinking capability of 500 mA continuously.
- Integrated suppression diodes on all outputs.
- No free wheel diodes required across inductive loads.
- Low driving current required, Typical 250—300 μA.
- High packing density. Seven darlington stages per package.
- Small dimensions, 16-pin DIL package.

Mechanical data

16-pin dual-in-line (DIL) ceramic package (≈TO-116)

' Circuit board should be drilled to take 0.5 mm diameter pins

Note All dimensions in mm

Plastic packaging will be available in the future.

Maximum ratings

VOLTAGES AND CURRENTS

POWER

Dissipation at T_A 25°C 800 mW

(Note: Derate above 25°C, at the rate of

8 mW/°C, see figure 12)

Peak power dissipation during 40 ms, duty 4 W

cycle 15% at TA 25°C

TEMPERATURE RANGES

Storage temperature range -55° C to $+150^{\circ}$ C

Operating ambient temperature range 0 to 70° C Junction temperature T₁ +125°C

ELECTRICAL CHARACTERISTICS (at 25°C T_A unless otherwise noted)

Symbol	Parameter	Test Condition	Ref. fig.	Min	Max	Units
	Input current					
IIN	PBD 352302	V _{IN} =17 V	1		1.3	mΑ
In	PBD 352303	V _{IN} =3,85 V	1		1.3	mΑ
VOUT(sat)	Output saturation voltage	I _{SINK} =350 mA, I _{IN} =500 μA	1		1.6	V
V _{OUT(sat)}		I _{SINK} =200 mA, I _{IN} =350 μA	1		1.3	٧
ICEX	Output leakage current	V _{OUT} =50 V, V _{IN} =0 V, T _A =70°C, V _{CC} =50 V	1		100	μΑ
Isink	Current through output Output clamp diode	$I_{1N} = 50 \ \mu A, \ T_{A} = 70^{\circ}C$	1		500	μΑ
٧ _F	Forward voltage	I _c =350 mA	3		2.0	V
-IR	Leakage current	ν _{CC} =50 V, V _{OUT} =1 V	2		50	μA
t _{PHL}	Delay times turn-on	V _{CC} =17 V	4.5		20	μS
t _{PLH}	turn-off	V _{CC} =17 V	4.5		20	μS

Order information

RIFA Order No.	Series input resistor	Encapsulation		
PBD 352301 J	None	Ceramic DIL		
PBD 352302 J	14 kohms	Ceramic DIL		
PBD 352303 J	2.5 kohms	Ceramic DIL		
PBD 352304 J	Zenerdiode	Ceramic DIL		

DC and AC tests and waveforms

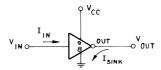


Figure 1

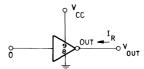


Figure 2

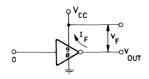


Figure 3

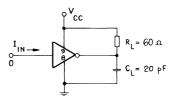


Figure 4

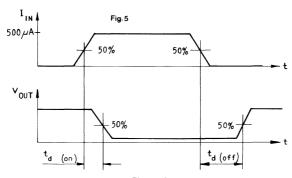


Figure 5

Typical applications

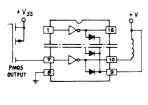
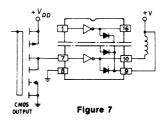
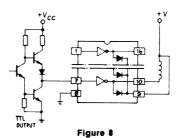
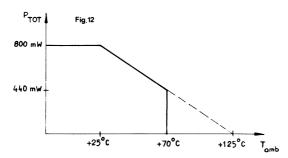





Figure 6

Power dissipating devating curve v ambient temperature

International **Product Service**

AUSTRALIA

Melbourne, Sydney

AUSTRIA

Vienna, Spittal/Drau

CANADA

Montreal

DENMARK FINLAND

Copenhagen Helsinki

FRANCE

Boulogne-Billancourt

WEST GERMANY

Berlin, Hamburg.

Düsseldorf, Frankfurt,

Stuttgart, Nuremburg, Munich

INDIA

Bangalore

ITALY

Milan

JAPAN

Tokyo

NETHERLANDS

Utrecht

NORWAY

Oslo

SOUTH AFRICA

Johannesburg

SPAIN

Madrid

SWITZERLAND

Zürich

TAIWAN

Taipei

TURKEY

Ankara

UNITED KINGDOM Birmingham, Glasgow,

Sevenoaks, Winslow

USA

Minneapolis, Minn.

Shelton, Conn.

